

Senderöhren

Senderöhren

1969

VEB WERK FUR FERNSEHELEKTRONIK

116 Berlin-Oberschöneweide Ostendstraße 1-5 Das vorliegende Handbuch enthält die wichtigsten Senderöhren einschließlich der zur Zeit in Entwicklung befindlichen Typen, die in absehbarer Zeit produziert werden.

Für die in diesem Handbuch angeführten Röhrentypen gewähren wir eine Garantie, die je nach Art und Verwendungszweck der Röhren individuell festgelegt wird. Diese Garantie wird entweder als Brennstundengarantie oder als Zeitgarantie gewährt. Wir bitten, bei Auftragserteilung den Verwendungszweck der Röhren anzugeben, damit die Garantieurkunde entsprechend ausgestellt werden kann.

Als Vertragsunterlagen werden unsere Röhrenstandards verwendet.

VEB Werk für Fernsehelektronik

Inhaltsverzeichnis

	Seite
Typenübersicht	6
Erläuterungen zu den technischen Daten	7
Röhrenvergleichsliste	9
Kurzzeichen für Senderöhren	11
Allgemeine Betriebsbedingungen für Senderöhren	15
Sendetrioden	19
Verstärkertrioden	87
Sendetetroden	95
Sendedoppeltetroden	135
Senderöhren für Impulsbetrieb	163
Sendepentoden	173

Typenübersicht

Sendetrioden	<u>Seite</u>	Sendedoppel- tetroden	Seite
SRS 361 SRS 326 SRS 360 SRS 362	19 23 27 31	SRS 4451 SRS 4452 SRS 4453	135 147 157
SRS 302 SRL 351	35 39		
SRL 352	45 51	Senderöhren für Impulsbetrieb	Seite
SRL/W 314 SRL 353	59 65	SRS 454 SRS 464	163 169
SRL 354 SRL 364 SRW 353	71 77		
SRV 355	83	Sendepentoden SRS 552N	Seite 173
		SRS 551	179
<u>Verstärkertrioden</u>	Seite		
VRS 328	87		

Sendetetroden	Seite
SRS 455	95
SRS 461	101
SRS 456	105
SRS 457	109
SRL 459	113
SRL 458	119
SRL 460	123
CDT 460	127

VRS 331

Erläuterungen zu den technischen Daten

1. Allgemeines

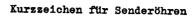
- 1.1 Die angegebenen Röhrendaten, mit Ausnahme der Grenzwerte, entsprechen den für den jeweiligen Röhrentyp vom Hersteller festgelegten Mittelwerten. Mit Streuungen um diese Werte muß gerechnet werden. Bei der Dimensionierung von Seriengeräten sollte aus diesem Grunde eine gewisse Reserve hinsichtlich der Ausgangs- und Steuerleistung vorgesehen werden.
- 1.2 Zu den jeweiligen Röhrentypen können auf besonderen Wunsch einzelne Streudaten angegeben werden.
- 1.3 Die angegebenen Elektrodenspannungen beziehen sich bis auf einige Ausnahmen auf die Katode. Die Ausnahmefälle wurden zur Unterscheidung entsprechend definiert.
- 1.4 Die angegebenen Kapazitätswerte sind an der kalten Röhre ohne Betriebsspannungen gemessen.
- 1.5 Emissionsstrommessungen werden mit Impulsgeräten durchgeführt und sind dem Hersteller vorbehalten. In besonderen Fällen ist der Hersteller bereit, auf Wunsch entsprechende Messungen vorzunehmen.
- 1.6 Bei den angegebenen Betriebswerten handelt es sich nicht um fest vorgegebene Einstellvorschriften. Sie können unter Wahrung der festgelegten Grenzwerte nach Bedarf vom Verbraucher geändert werden.

2. Grenzwerte

- 2.1 Die angegebenen Grenzwerte sind absolute Grenzwerte. Sie dürfen auf keinen Fall überschritten werden und zwar auch dann nicht, wenn bei der gewählten Schaltung einer der Grenzwerte nicht voll erreicht wird. Bei Nichtbeachtung dieser Hinweise erlischt jeder Garantieanspruch.
- 2.2 Die Grenzwerte dürfen auch bei Netzspannungsschwankungen und Belastungsänderungen nicht überschritten werden. Entsprechende Schutzeinrichtungen (z. B. Schnellrelais) sind auf jeden Fall vorzusehen.

Erläuterungen zu den technischen Daten

2.3 Zur Bestimmung der Gitterverlustleistung wird von der Eingangsleistung (0,9 \cdot Ugs \cdot Ig) die an die Gittervorspannungsquelle abgegebene Leistung (\cdot Ug \cdot Ig) subtrahiert.



Röhrenvergleichsliste der Senderöhren

In der folgenden Liste haben wir die jenigen ausländischen Senderöhren aufgeführt, die mit unseren Röhren vergleichbar sind. Die in Klammern gesetzten WF-Röhren sind ähnlich, aber nicht ohne weiteres austauschbar.

Ein Vergleich der technischen Daten und Sockelschaltungen empfiehlt sich in jedem Falle.

• • •	
fremder Typ	WF Typ
C 1149/1	SRS 464
CV 427	SRS 464
CV 2797	SRS 4451
CV 2799	SRS 4452
QB 4/1100	(SRS 456)
QQE 03/20	SRS 4452
QQE 06/40	SRS 4451
QQV 03/20	SRS 4452
QQV 06/40	SRS 4451
RS 782	(SRL 459)
RS 826	(SRV 355)
RS 1003	SRS 551
RS 1009	SRS 4451
RS 1009	(SRS 4453)
RS 1011	(SRL 364)
RS 1019	SRS 4452
RS 1032	SRL 458
2 B 29	(SRS 4453)
4 PR 60 B	SRS 464
715 C	SRS 464
829 B	SRS 4451
829 B	(SRS 4453)
5894	SRS 4451
6252	SRS 4452
ГИ 30	(SRS 4453)
ГУ-50	SRS 552 N

Spannungen:

σ	Spannung
U.a.	Anodenspannung
u mod	Anodenspannungsmodulation
U _a O	Anodenkaltspannung
U _{as}	Anodenspitzenspannung
U _{ad}	Anodenspannung im Schwingbetrieb
U _{an}	Anodenimpulsspannung
U e	Emissionsspannung
υ	Heizspannung
^U f k	Spannung zwischen Heizer und Katode
-ug	Gittervcrspannung
U gs	Gitterspitzenspannung
Ugs HF	HF-G .tterspitzenspannung
Ug1p	positive Gitterimpulsspannung
^U g1 eff	Gitterspannung (Effektivwert)
ug1 sperr	Gittersperrspannung
[∪] g2	Schirmgitterspannung
g2 mod	Schirmgitterspannungsmodulation
°g20	Schirmgitterkaltspannung
^o g2đ	Schirmgitterspannung im Schwingbetrieb
U _{tr}	Transformatorspanning
Uin s NF	NF-Eingangsspitzenspannung

Strome:

Strom
Anodenstrom
Anodenimpulsstrom
Anodenstrom im Schwingbetrieb
Anodenruhestrom
Anodenspitzenstrom
Emissionsstrom
Heizstrom

Kurzzeichen für Senderöhren

I	Gitterstrom
I _{c1} p	Gitterimpulsstrom
[†] g1p ^I g1d	Gitterstrom im Schwingbetrieb
-Ig1	negativer Gitterstrom
Т	Schirmgitterstrom
1g2 1g2	Schirmgitterimpulsstrom
1g2p I ₇₂ g	Schirmgitterstrom im Schwingbetrieb
1 _{g2đ}	Katodenstrom
I _{ks}	Katodenspitzenstrom
I _{kp}	Katodenimpulsstrom
I _{k eff}	Katodenstrom (Effektivwert)
± ΔTT	

Leistungen:

P	Leistung
Pout	Ausgangsleistung
Pin	Eingangsleistung
P	Anodenverlustleistung
Pa Pg P-0	Gitterverlustleistung
P _{a2}	Schirmgitterverlustleistung
P _{mod}	Modulationsleistung
P _{träg}	Trägerleistung

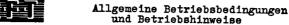
Widerstände:

R	Widerstand
Ra	Außenwiderstand
RaI aII	Widerstand zwischen den beiden Anoden
	Gitterableitwiderstand
Rg Rg1(f)	Gitterableitwiderstand bei fester Gittervorspannung
Rg1(k)	Gitterableitwiderstand bei automa- tischer Gittervorspannung
Rea	Bremsgitterwiderstand
R _{g3} R _{iL}	Leistungsinnenwiderstand
Rk	Katodenwiderstand

Kurzzeichen für Senderöhren

Kapazitäten:

C	Kapazität
Cg1 a	Kapazität zwischen Gitter 1 und Anode
Cin	Eingangskapazität
Cout	Ausgangskapazität
Cal all	Kapazität zwischen Anode I und Anode II
Cg1I g1II	Gitterkapazität zwischen dem I. und dem II. System
Ck g1	Kapazität zwischen Katode und Gitter I
Cg1 g2	Kapazität zwischen Gitter 1 und Gitter 2
Ck g2	Kapazität zwischen Katode und Gitter 2
C _k a	Kapazität zwischen Katode und Anode
Cg2 a	Kapazität zwischen Gitter 2 und Anode


Sonstige Kurzzeichen:

В	Bandbreite
D	Durchgriff
$^{\mathrm{D}}$ g2	Schirmgitterdurchgriff
f o	Frequenz
f p	Impulsfolgefrequenz
K T	Rückkopplungsfaktor
k	Klirrfaktor
m	Modulationsgrad
p _{kl}	Kühlluftdruck
$p_{\mathbf{k}\mathbf{w}}$	Kühlwasserdruck
Δp	Druckabfall am Kühler
S	Steilheit
/u	Verstärkungsfaktor
η	Wirkungsgrad
/ ¹² g2 g1	Schirmgitterverstärkungsfaktor
₹ _W	spezifischer Widerstand des Kühlwassers
^t A	Anheizzeit
^t p	Impulsdauer

Kurzzeichen für Senderöhren

$artheta_{f a}$	Temperatur am Anodenanschluß
ygla gkolb	Temperatur an den Glaseinschmelzungen
9 ELA	Temperatur am Kolben
rstif	Temperatur an den Stiften
v _{kl} in	Kühllufteintrittstemperatur
ykl out	Kühlluftaustrittstemperatur
kw out	Kühlwasseraustrittstemperatur
ν _{mk}	Temperatur der Metallkeramikverbindung
T T	Tastverhältnis
$\phi_{ t k 1}$	Kühlluftstrom
₽ K1	Kühlwasserstrom

1. Allgemeines

- 1.1 Der Transport und die Montage von Senderöhren mit Wolframund thorierten Wolframkatoden muß, soweit vom Hersteller nichts anderes vermerkt ist, in senkrechter Lage der Röhre erfolgen. Die Lagerung ist zweckmäßigerweise ebenfalls in dieser Lage vorzunehmen. Außerdem sind die Röhren sowohl vor kurzzeitigen als auch dauernden Erschütterungen zu schützen.
- 1.2 Die Elektrodenzuführungen müssen so flexibel sein, daß keine mechanischen Spannungen am Vakuumgefäß auftreten können.
- 1.3 Zum Schutz der Röhre ist zweckmäßigerweise ein Anodenschutzwiderstand in der Schaltung vorzusehen. Beim Einstellen, Erproben und Abstimmen des Senders soll die Anodenspannung verringert werden, um ein Überlasten der Röhre zu vermeiden.
 Außerdem muß eine entsprechende Einrichtung (z. B. Ionotron)
 die Röhre bei Überschlägen schützen.

2. Heizung

- 2.1 Senderöhren können prinzipiell mit technischem Wechselstrom oder mit Gleichstrom geheizt werden. Die Wahl der Heizungsart wird dem Kunden überlassen.
- 2.2 Für die Einstellung der Heizung ist, sofern im Typenblatt nicht anders vermerkt, die Heizspannung maßgebend. Der Heizstrom kann in bestimmten Grenzen Abweichungen vom Nennwert aufweisen. Im Interesse einer hohen Lebensdauer der Röhre soll die Heizspannung dem Nennwert so nahe wie möglich liegen. Beim Betrieb mit Netzspannung muß hierzu eine nach Möglichkeit automatische Regelung der Heizspannung vorgesehen werden.

Die Abweichungen der Heizspannung vom Nennwert dürfen bei thorierten Wolframkatoden kurzzeitig (5 mal 5 min in 24 Betriebsstunden) nicht mehr als ± 5 % betragen. Die dauernd zulässige Abweichung ist ± 1 %, soweit im Typenblatt nicht anders angegeben.

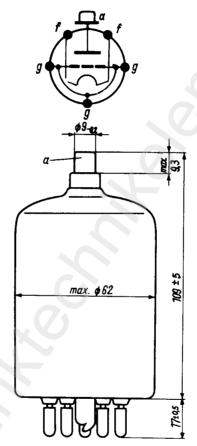
- 2.3 Die für reine Wolframkatoden angegebene Heizspannung gibt den Höchstwert an, der für eine neue Röhre nötig sein kann, um ihre Betriebs- und Grenzwerte zu garantieren. Es ist aber möglich, daß bei neuen Röhren eine niedrigere Heizspannung ausreicht, womit eine Erhöhung der Lebensdauer verbunden ist. Die Einstellung ergibt sich in diesen Fällen aus der geforderten Leistung sowie der Qualität des Ausgangssignals.
- 2.4 Für direkt und indirekt geheizte Oxidkatoden beträgt die höchstzulässige Abweichung vom Nennwert ± 5 %, sofern vom Röhrenhersteller nichts anderes festgelegt ist. Jedoch darf diese Toleranz nur kurzzeitig in Anspruch genommen werden, da sonst eine Minderung der Lebensdauer eintreten kann.
- 2.5 Die im Datenblatt gemachten Angaben hinsichtlich des Einschaltstromstoßes sind unbedingt zu beachten. Die Kontrolle muß mit einem Schleifenoszillografen durchgeführt werden. Bei Röhren, wo die entsprechende Angabe fehlt, kann die volle Heizspannung zugeschaltet werden.
- 2.6 Eine Einrichtung im Sender soll verhindern, daß positive Anoden-, Schirmgitter- und Steuergitterspannungen an die Röhre gelegt werden können, bevor die Katode die volle Temperatur erreicht hat (Kontrolle über Heizstrom).
- 2.7 Bei kurzen Betriebspausen (bis ca. 2 Stunden) soll die Heizung für Röhren mit thorierter Wolframkatode nach Möglichkeit eingeschaltet bleiben.
- 2.8 Es wird empfohlen, Röhren ab 20 kW Anodenverlustleistung vor Inbetriebnahme und nach mehr als zweimonatiger Betriebspause ca. 30 min vorzuheizen. Weiterhin wird empfohlen, die Röhren nach sechsmonatiger Lagerung ca. 1 Stunde dynamisch in Betrieb zu nehmen.

3. Kühlung

3.1 Der Einbau strahlungsgekühlter Röhren muß so erfolgen, daß eine ungehinderte Luftzirkulation erfolgen kann. In einigen

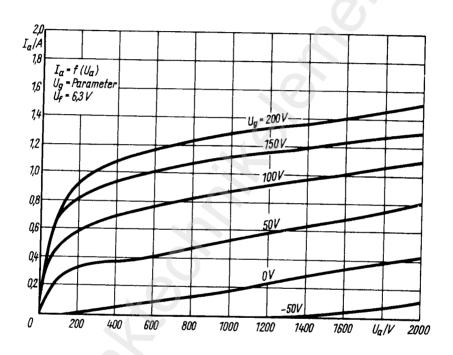
Fällen wird eine geringe zusätzliche Kühlung durch einen schwachen Luftstrom erforderlich. Als besonders kritisch sind dabei die Einschmelzstellen zu betrachten. Auf jeden Fall dürfen die vom Hersteller angegebenen Temperaturen am Vakuumgefäß nicht überschritten werden. In einigen Fällen kann ein kleiner Zusatzradiator für den Anodenanschluß notwendig sein.

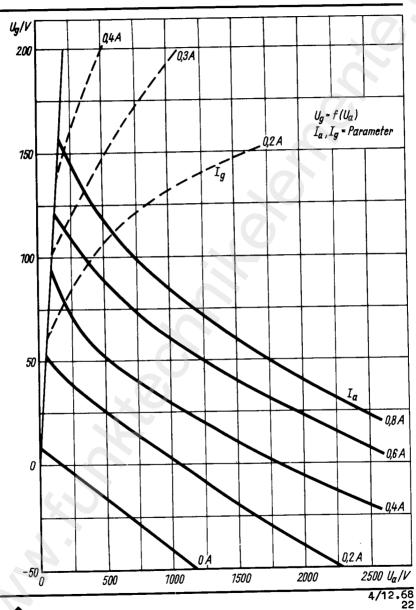
- 3.2 Röhren für forcierte Luftkühlung (Druck- und Saugluft) haben eine metallische Außenanode, die mit einem entsprechenden Radiator versehen ist. Die Aufstellung der Daten hinsichtlich der Kühlluftmenge erfolgt beim Hersteller unter den für die Erzielung des Kühleffektes günstigsten Bedingungen (z.B. möglichst gleichmäßiger Luftstrom und Gleichverteilung auf den Radiatorquerschnitt) sowie bei den im Typenblatt angegebenen Werten für Eintrittstemperatur und Luftdruck. Können diese Bedingungen für ein Kühlsystem des Verbrauchers z.B. aus konstruktiven Gründen nicht garantiert werden, so sind je nach Anlage entsprechende Sicherheitsfaktoren hinsichtlich der Luftmenge vorzusehen. Die Kühlluft soll mittels Filter von Feuchtigkeit und Verunreinigungen befreit werden. Bei einigen Röhrentypen und bei Betrieb in der Nähe von Grenzwerten kann eine zusätzliche Luftkühlung gewisser Anschlußstellen notwendig sein. Die Bestimmung sowie die Kontrolle der benötigten Luftmenge erfolgt am besten über die Ermittlung der Temperatur der Glasmetalleinschmelzungen. Sie darf den im Typenblatt angegebenen Wert nicht überschreiten. Die Überwachung der Temperatur kann durch Thermoelemente. Thermosicherungen und temperaturempfindliche Farben erfolgen. Es muß garantiert sein, daß nach Abschalten der Betriebsspannung die forcierte Kühlung mindestens noch 1 Minute aufrechterhalten bleibt.
- 3.3 Für die Kühlung von wassergekühlten Außenanodenröhren ist nach Möglichkeit destilliertes Wasser zu verwenden. In den Fällen, wo aus besonderen Fällen mit Rohwasser gekühlt wird.


muß darauf geachtet werden, daß Anode und Kühltopf von Wasserausscheidungen (Kalk) freigehalten werden. Gegebenenfalls ist eine Enthärtung des Wassers vorzunehmen. Die Konstruktion der Kühlwasserversorgung muß so ausgelegt sein, daß auch beim Abschalten der Pumpen der Kühltopf mit Wasser gefüllt bleibt.

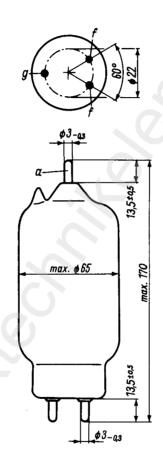
3.4 Beim Unterschreiten der erforderlichen Kühlluft bzw. Kühlwassermenge müssen Anodenspannung, Schirmgitterspannung (soweit vorhanden), sowie Heizung automatisch abgeschaltet werden.

Die SRS 361 ist eine strahlungsgekühlte Sendetriode für HF- und NF-Verstärkung. Sie kann als Oszillator, insbesondere für die Nachrichtentechnik, sowie für industrielle HF-Generatoren und in elektromedizinischen Geräten verwendet werden.


Betriebslage: senkrecht stehend Masse: ca. 140 g Sockel: 5-31 TGL 200-8339 Bl.1 Fassung: 5-31

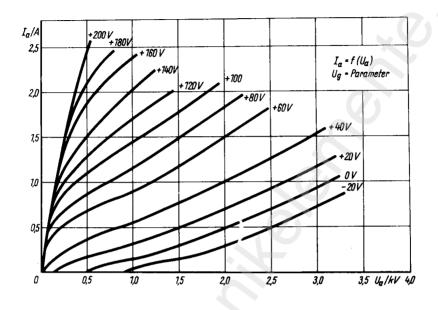

Röhrenstandard: TGL 200-8202

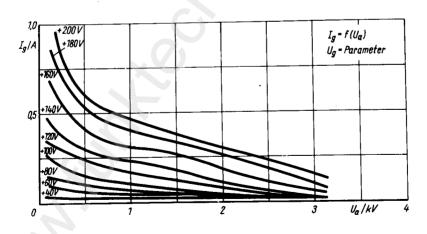
Heizung				
Direkt geheizte thorierte Wolframkatode				
Heizspannung	Ŭ f		6,3	V
Heizstrom	I _f	ca.	5,4	A
Statische Werte	-		4	%
Durchgriff bei Ua = 22,5 kV, Ia = 44 mA			3	
Steilheit bei $U_a = 2,5 \text{ kV}$, $I_a = 44 \text{ mA}$	S)	m.A.∕∇
Betriebswerte				
bei HF-Verstärkung, C-Betrieb, Gitterbas	isschalt	ing		
Frequenz	f	100	100	MHz
Anodenspannung	Ua	2500	2000	٧
Gittervorspannung	-U ,,	200	150	٧
Anodenstrom	-Ug Ia	215	215	mA
Gitterstrom	I g	50	50	mA
Anodenverlustleistung	P _a	130	120	W
Ausgangsleistung	Pout	410	310	W
Wirkungsgrad	ળ હાં.	76	72	%
	,			
Grenzwerte				
Frequenz	f	max.	100	MHz
Anodenspannung	$\mathtt{v}_\mathtt{a}$	max.	2500	٧
Gittervorspannung	-Ug	max.	250	A
Gitterspitzenspannung	[∪] gs	max.	450	٧
Katodenspitzenstrom	Iks	max.	1,6	A
Katodenstrom	$^{\mathtt{I}}\mathtt{k}$	max.	270	mA
Anodenverlustleistung	P.	max.	135	W
Gitterverlustleistung	Pg ag	max.	12	
Temperatur am Anodenanschluß	§°a	max.	220	
am Kolben	s_{kolb}	max.	290	°C
an den Stiften	$\vartheta_{ t stif}$	max.	180	oc
Kapazitäten				
Eingang	$c_{\mathtt{in}}$		6,5	
Ausgang	Cout		0,2	_
Gitter/Anode	^C g a		5,5	рF
			2/	12.68



Die SRS 326 ist eine strahlungsgekühlte Sendetriode. Sie wird in der Nachrichtentechnik und in industriellen HF-Generatoren, sowie in elektromedizinischen Geräten eingesetzt.

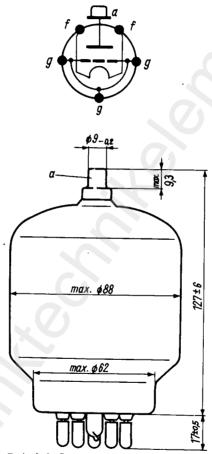
Betriebslage: senkrecht stehend Masse: ca. 150 g Röhrenstandard: TGL 200-8405



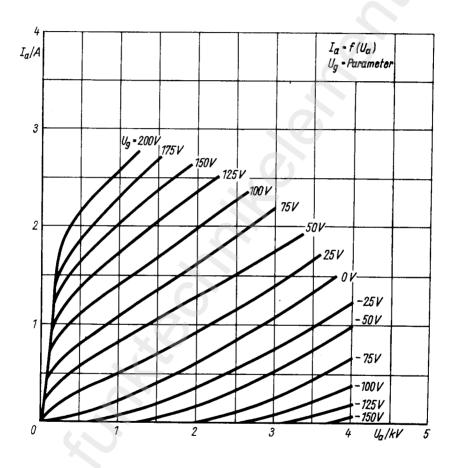

SRS 326

Heizung			
Direkt geheizte thorierte Wolframkatode			77
Heizspannung	บ _ั ฐ	7	V
Heizstrom	1 _f	8,75	A
Statische Werte	D	3,5	%
Durchgriff bei U _a = 1,82,2 kV	ъ	3,5	70
I _a = 100 mA		_	A AT
Steilheit bei U _a = 2 kV	S	5	mA/V
$I_a = 80120 \text{ mA}$			
Parkerd all manages			
Betriebswerte			
bei Selbsterregung (C-Betrieb)	f	≦ 50	MHz
Frequenz		2.5	
Anodenspannung	U _a	240	
Anodenstrom	10	_ • -	
Gitterstrom	I g	60	
Ausgangsleistung	rout	400	
Gitterableitwiderstand	$^{\mathtt{R}}_{\mathtt{g}}$	3,5	kOhm
Betriebswerte			
bei Selbsterregung (Halbwellenbetrieb)			
Frequenz	f	≦ 50	MHz
Transformatorspannung	U.s	2.5	k∇
Anodenstrom	_ე.∡ 	175	
Gitterstrom	Ia	50	
	I _g		
Ausgangsleistung	Pout	300	
Gitterableitwiderstand	Rg	1,5	k0hm
Kapazitäten			
Eingang	$\mathtt{c}_{\mathtt{in}}$	7,0	рF
Ausgang	- 1 n C	0,7	_
Gitter/Anode	Cout	4,4	
GIVIOI/ ALOUG	^C g a	~, ~	PE

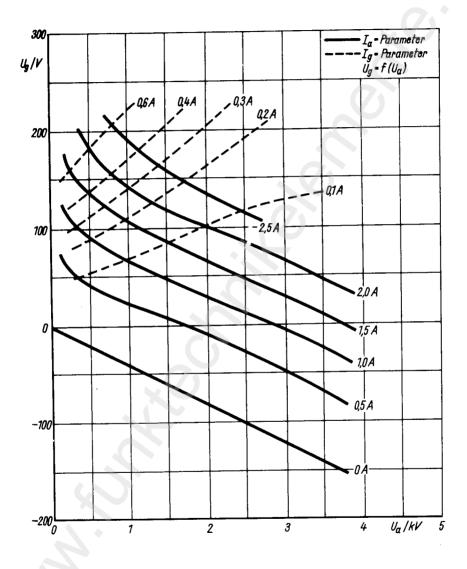
Grenzwerte				
Frequenz	f	max.	120	MHz
Anodenspannung (bei Halbwellenbetrieb f = 50 Hz, U _{tr max} = 4 kV)	$v_{\mathbf{a}}$	max.	3,5	kV
Anodenspitzenspannung bei f ≤ 50 MHz	U _{as}	max.	8	kV
Katodenstrom	I _k	max.	0.3	A
Katodenspitzenstrom	I _{ks}	max.	1,8	A
Anodenverlustleistung	Pa	max.	250	W
Gitterverlustleistung	Pg g	max.	40	W
Temperatur am Kolben	g_{kolb}^{s}	max.	350	oG
an den Stiften	V a+1+	max.	180	oc



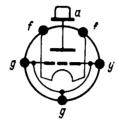
Die SRS 360 ist eine strahlungsgekühlte Sendetriode für HF- und NF-Verstärkung. Sie kann als Modulator und Oszillator, insbesondere für die Nachrichtentechnik, sowie für industrielle HF-Generatoren und in elektromedizinischen Geräten verwendet werden.

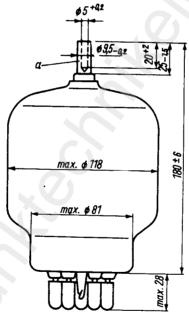


Betriebslage: senkrecht stehend Masse: ca. 240 g Sockel: 5-31 TGL 200-8339 Bl.1 Fassung: 5-31 Röhrenstandard: TGL 9461

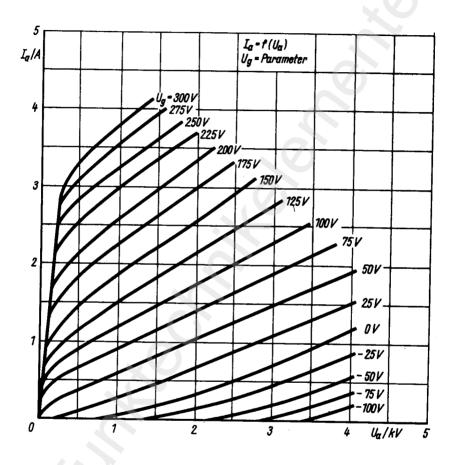


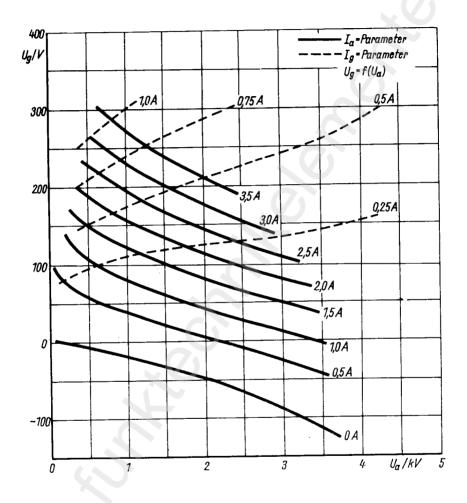
Heizung				
Direkt geheizte thorierte Wolframkatode				
Heizspannung	υ ₂ .		5	W
Heizstrom	I _f	•	a. 14	A
11012B 01 0m	-f		a. 14	-
Statische Werte				
Durchgriff bei Ug= 12 kV, Ig= 125 mA	D		4	%
Steilheit bei U _n = 2 kV, I _n = 125 mA	S		5,5	mA/V
u ,			•	
Betriebswerte				
bei HF-Verstärkung, C-Betrieb, Gitterbasiss				<u>A 1</u>
Frequenz		100	≟ 1 00	MHz
Anodenspannung	U _a	3	2,5	k₹
Gittervorspannung	-Ug	250	300	٧
Anodenstrom	Ia	300 ca	a. 400	m.A
Gitterstrom	I,	< 69	69	mA
Ausgangsleistung	Pout	750	750	W
	out			
Grenzwerte				
Frequenz	f	max.	1 50	MHz
Anodenspannung .	U _a	max.	3	k₹
Anodenspitzenspannung	U _{as}	max.	10	k₹
Katodenstrom	I _k	max.	480	mA
Katodenspitzenstrom	I _{ks}	max.	3	A
Gitterableitwiderstand	R g	max.	100	kOhm
Anodenverlustleistung	P,	max.	250	W
Gitterverlustleistung	Pg	max.	30	W
Temperatur am Anodenanschluß	_ဗ ီရ	max.	220	°c
am Kolben (in unmittelbarer Nähe d.Anode)	kolb	max.	250	°c
an den Stiften	v _{stif}	max.	180	oc
	ABUII			
<u>Kapazitäten</u>				
Eingang	$\mathtt{c}_\mathtt{in}$		7	\mathbf{pF}
Ausgang	Cout		0,38	рF
Gitter/Anode	Cg a		5,3	рF
	-			



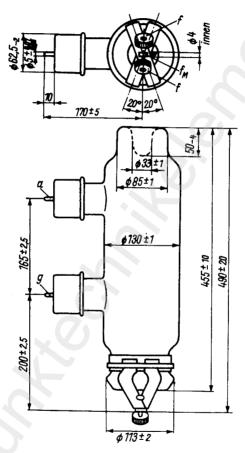


Die SRS 362 ist eine strahlungsgekühlte Sendetriode für HF- und NF-Verstärkung. Sie kann als Modulator und Oszillator, insbesondere für Nachrichtentechnik und industrielle HF-Generatoren verwendet werden.


Betriebslage: senkrecht stehend Masse: ca. 480 g Sockel: 5-38 TGL 200-8340 Bl.1 Fassung: 5-38 TGL 200-3534 Röhrenstandard: TGL 9462


SRS 362

Heizung				
Direkt geheizte thorierte Wolframkatode			10	v
Heizspannung	^U f		10	A
Heizstrom	If	ca.	10	H
Statische Werte				
Durchgriff bei $U_a = 33,5 \text{ kV}, I_a = 125 \text{ mA}$	D		3,3	%
Steilheit bei Ug= 3,5 kV, Ig= 125 mA	S		4,5	mA/V
<u>Betriebswerte</u>				
bei HF-Verstärkung, C-Betrieb, Gitterbasi	sschaltur	1g		
Frequenz	f		100	MHz
Anodenspannung	v_a	3	3500	Λ
Gittervorspannung	-Ug		350	A
Anodenstrom	10		430	mA
Gitterstrom	1_{σ}	ca	. 85	m.A
Anodenverlustleistung	Pa		450	W
Ausgangsleistung	Pout	•	1050	W
Grenzwerte				
Frequenz	f	max.	100	MHz
Anodenspannung	$^{^{ extsf{\scriptsize U}}}\mathbf{a}$	max.		V
Anodenspannungsmodulation	^U a mod	max.	-	Ψ
Anodenspitzenspannung	U _{as}	max.1		Λ
Gittervorspannung	-Ug	max.	-	A
Gitterspitzenspannung	ບ ຼ gs	mex.	600	A
Katodenspitzenstrom	Iks	max.	3,8	A
Anodenstrom	I _a	max.	0,7	A
Anodenverlustleistung	Pa	max.	450	W
Gitterverlustleistung	Pg	max.		W
Temperatur am Anodenanschluß	$\vartheta_{\mathbf{a}}^{\circ}$	max.	220	
am Kolben	$\theta_{ exttt{kolb}}$	max.	250	°C
an den Stiften	$\vartheta_{\mathtt{stif}}$	max.	180	°C
<u>Kapazitäten</u>				
Eingang	Cin		10	pF
Ausgang	Cout	₹	0,36	рF
Gitter/Anode	Cg a		7,4	рF

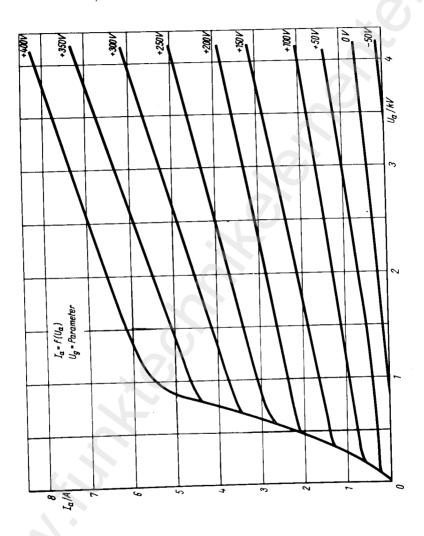


Die SRS 302 ist eine strahlungsgekühlte Sendetriode. Sie wird in der Nachrichtentechnik und in industriellen HF-Generatoren eingesetzt.

Betriebslage: senkrecht stehend, Sockel nach unten

Masse: ca. 1,95 kg Fassung: gerätegebunden Röhrenstandard: TGL 200-8406

SRS 302


				_
Heisung .				
Direkt geheizte thorierte Wolframkatode				
Heizspannung	v _f		16,5	V
Heizstrom	If	ca.	18	A
Statische Werte	_			
Durchgriff bei U _a = 25 kV, I _a = 200 mA	D		2 8	% - 1 AT
Steilheit bei Ua= 4 kV, Ia= 100300 mA	8		8	mA/V
Betriebswerte				
bei HF-Verstärkung (C-Betrieb ≤ 3 MHz)				
Anodenspannung	$\overline{u}_{\mathbf{a}}$	5	12	kV
Gittervorspannung	-Ug	200	300	7
Anodenstrom	Τ.	750	350	mA
Gitterstrom	I g	150	50	mA.
Ausgangsleistung	Pout	2,5	2,4	kW
Grenzwerte				
Frequenz	f	max.	50	MHz
Anodenspannung bei f ≦ 20 MHz	${\tt U}_{{f a}}$	max.	10	kV
bei f ≦ 3 MHz	υ <mark>α</mark>	max.	12	kV
Anodenspannungsmodulation	Ua mod	max.	6	k∇
Anodenspitzenspannung	Uas	max.	25	kV
Katodenstrom	I _k	max.	0,85	A
Katodenspitzenstrom	I _{ks}	max.	5	A
Anodenverlustleistung	Pa	max.	1,2	kW
Gitterverlustleistung	Pg	max.	200	W
Temperatur am Kolben	[∮] kolb	max.	350	°c
an den Stiften	Sstif	max.	200	°C
Der Einschaltstromstoß darf 35 A nicht üt		ten.		
Kapazitäten				
Eingang	$\mathtt{c}_{\mathtt{in}}$		22	p₽
Ausgang	$^{\mathtt{C}}_{\mathtt{out}}$		4,5	рF
Gitter/Anode	^C g a		8	₽F
	-			


3/12.68

Die SRL 351 ist eine luftgekühlte Sendetriode mit konzentrischem Gitteranschluß. Sie wird für HF-Verstärkung und als Oszillator in Gitterbasisschaltung, insbesondere für UKW- und Fernsehsender sowie für industrielle HF-Generatoren und elektromedizinische Geräte verwendet.

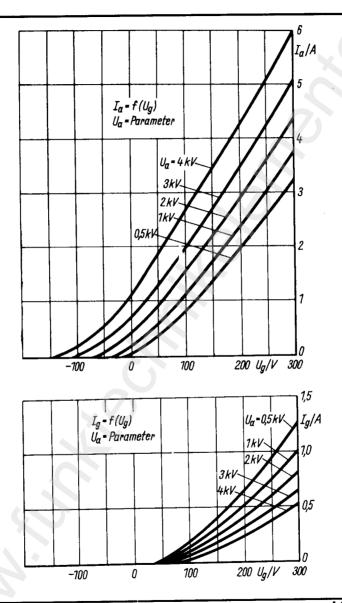
Betriebslage: vertikal Masse: ca. 1,1 kg Fassung: gerätegebunden Röhrenstandard: TGL 9463

SRL 351

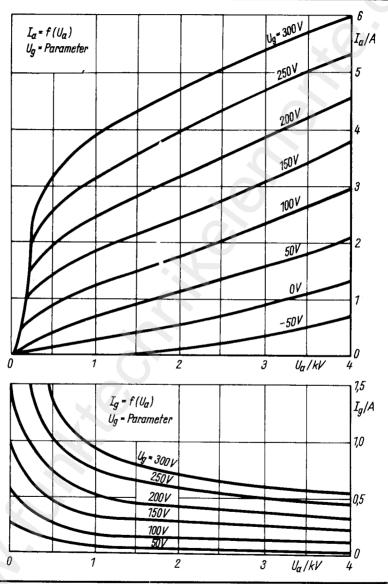
Heizung				
Direkt geheizte thorierte Wolframkatod	.0			
Heizspannung	υ		5	V
Heizstrom	I		45	A
Ohaddasha Wassha				
Statische Werte				
Verstärkungsfaktor bei $U_{R} = 24 \text{ kV}, I_{R} = 1 \text{ A}$	47		29	
Steilheit bei $U_a = 2.5 \text{ kV}$, $I_a = 1 \text{ A}$	/u S		12	mA/V
a · · · a				•
Betriebswerte				
bei Verstärkung, Frequenzmodulation,				
C-Betrieb, Gitterbasisschaltung				
Frequenz	f		88	MHz
Anodenspannung	Ua		4	k₹
Gittervorspannung	-11		230	٧
Anodenstrom	I _a		500	mA
Gitterstrom	Ig		100	mA
Eingangsleistung (davon sind 60 W für den Steuervorgang notwendig)	Pin		250	A
Ausgangsleistung (einschließlich durchgereichter Leistung)	Pout		1,2	kW
Grenzwerte				
Frequenz	f	max.	250	MHz
Anodenspannung bei f ≤ 30 MHz	_	max.	5	kV
bei f ≦100 MHz	υ n	max.	4,5	
bei f ≦250 MHz	U.a.		• -	
Katodenstrom	Ua.	max.	3	k∇
	I _k	max.	1,2	A
Anodenverlustleistung	Pa	max.	2	kW
Gitterverlustleistung	Pg	max.	80	W
Temperatur an den Glaseinschmelzungen	$g_{\mathtt{gla}}$	max.	180	o ^C

Der Einschaltstromstoß darf 70 A nicht überschreiten.

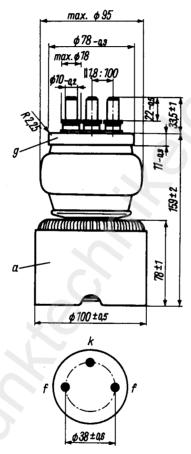
Kapazitäten


Eingang	$\mathtt{c}_{\mathtt{in}}$	17	pF
Ausgang	Cout	0,2	pF
Gitter/Anode	Cga	8	рF

Kühlung


Kühlluftstrom (bei $P_a = 2$ kW) Φ_{kl} ca. 2 m³/min 1 Kühlluftstrom (bei $P_a = 1$ kW) Φ_{kl} ca. 1 m³/min 1 Druckabfall am Kühler Δ_p ca. 50 mmWS . Luftstrommessungen mit Rotamesser oder Prandtlschem Staurohr.

¹⁾ bei einer Lufteintrittstemperatur v_{kl} in = 25 °C und einem Luftdruck p_{kl} = 760 Torr.



5/12.68 43

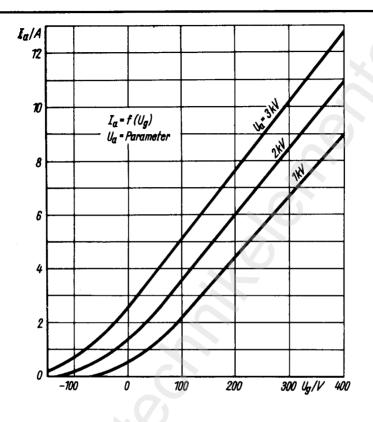
Die SRL 352 ist eine luftgekühlte Sendetriode mit konzentrischem Gitteranschluß. Sie wird für Gitterbasisschaltungen, insbesondere für UKW- und Fernsehsender sowie industrielle HF-Generatoren verwendet.

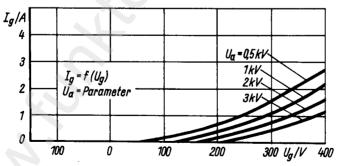
Betriebslage: vertikal Masse: ca. 2,75 kg Fassung: gerätegebunden Röhrenstandard: TGL 9464

SRL 352

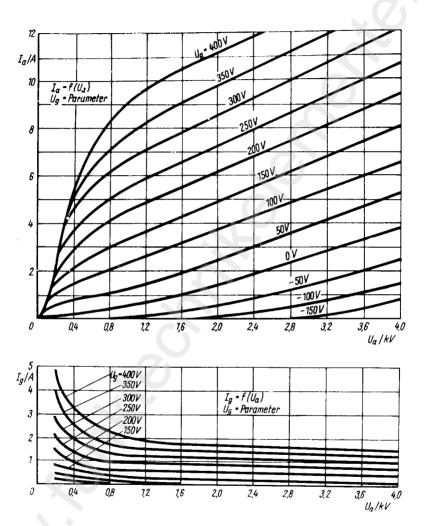
Heizung				
Direkt geheizte thorierte Wolframkatode				
Heizspannung	υf		7,0	V
Heizstrom	If		68	A
Statische Werte Verstärkungsfaktor bei U _a = 24 kV, I _a = 1 A	/u		25	
Steilheit bei U _a = 2,5 kV, I _a = 1 A	s		18	mA/V
Betriebswerte				
bei Verstärkung, Frequenzmodulation,				
C-Betrieb, Gitterbasisschaltung				
Frequenz	f		88	MHz
Anodenspannung	U _a		4,5	kV
Gittervorspannung	-U _g		250	٧
Anodenstrom	T ^B		1,2	A
Gitterstrom	I _g		0,3	A
Eingangsleistung (einschließlich durchgereichter Leistung)	Pin		600	W
Ausgangsleistung (einschließlich durchgereichter Leistung)	Pout		3,2	kW
Grenzwerte_				
Frequenz	f	max.	220	MHz
Anodenspannung bei f ≤ 30 MHz	υ _a	max.	6	kV
bei f ≤ 100 MHz	U _{a.}	max.	5	k₹
bei f ≤ 220 MHz	U _A	max.	4	kV
Katodenstrom	$\mathbf{I}_{\mathbf{k}}$	max.	2	A
Anodenverlustleistung	P.	max.	2,5	
Gitterverlustleistung	Pg	max.	150	W
Temperatur an den Glaseinschmelzungen	$g_{\mathtt{gla}}$	max.	180	°C

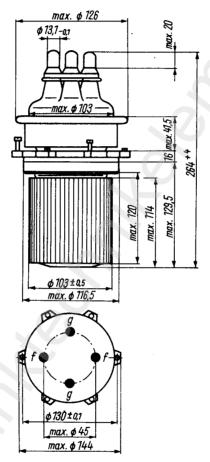
Der Einschaltstromstoß darf 125 A nicht überschreiten.


Kapazitäten	
-------------	--


Eingang	$^{\mathtt{c}}_{\mathtt{in}}$	23	\mathbf{pF}
Ausgang	Cout	0,4	pF
Gitter/Anode	c _{g a}	12	pF
Kühlung			2 41
Kühlluftstrom	$\Phi_{\mathbf{k}\mathbf{l}}$	ca. 3	m^3/min^{1}
Druckabfall am Kühler	4	ca. 60	mmWS

Luftstrommessungen mit Rotamesser oder Prandtlschem Staurohr.


¹⁾ bei $P_{a \text{ max}}$, einer Lufteintrittstemperatur ϑ_{kl} in = 25 °C und einem Luftdruck p_{kl} = 760 Torr.


4/12.68 48

Die SRL/W 314 ist eine Sendetriode für Luft- und Wasserkühlung, die insbesondere für die Nachrichtentechnik und industrielle HF-Generatoren verwendbar ist.

Betriebslage: vertikal Masse: ca. 4,5 kg Fassung: gerätegebunden Kühltopf: SRW 42359

SRL/W 314

Heizung				
Direkt geheizte thorierte Wolframkatode	θ			
Heizspannung	υ _f		5,3	V
Heizstrom	I _f		140	A
Statische Werte				
Verstärkungsfaktor			/);	
bei $U_a = 4 \text{ kV}$, $I_a = 1 \text{ A}$	/u		33	
Steilheit bei $U_a = 4 \text{ kV}$, $I_a = 1 \text{ A}$	S		28	mA/V
Leistungsinnenwiderstand	$^{ m R}$ iL	ca	. 60	Ohm
Betriebswerte				
bei Hochfrequenzverstärkung (B-Betrieb	bei f ≦	3 MHz)		
Kühlung			Wasser	r
Anodenspannung	$\mathtt{U}_{\mathbf{a}}$	6	10	kV
Gittervorspannung	-Ug	180	300	A
Gitterspitzenspannung	Ugs	450	600	v
Anodenstrom	Ia	2,8	3,6	A
Gitterstrom	I g	0,6		A
Eingangsleistung	Pin	270	400	W
Ausgangsleistung	Pout	12	26	kW
Außenwiderstand	Ra	1,2	1,6	kOhm
	, α			
Betriebswerte				
bei Selbsterregung (C-Betrieb bei f ≦	3 MHz)			
Kühlung		Luft	Wasse	r
Anodenspannung	$\mathtt{U}_{\mathbf{a}}$	6	10	kV
Anodenstrom	I	3	3,8	A
Gitterstrom	I,	0,65	0,7	A
Gitterwiderstand	R _g	400	600	Ohm
Ausgangsleistung	Pout	13	28	kW
Außenwiderstand	R	1	1	kOhm

Rückkopplungsfaktor

1:8,5 1:12

Betriebswerte bei				
Anodenspannungsmodulation (f \(\frac{1}{2} \) MHz)				
Anodenspannung	U _a		6	kV
Gittervorspannung	-Ug		360	_V 1)
Gitterspitzenspannung	U _E B		800	٧
Anodenstrom	I.		2,8	A
Gitterstrom	⊥ _ø .		0,75	A
Eingangsleistung	Pin		600	W
Ausgangsleistung	Pout		12	kW
Außenwiderstand	Ra		1,4	kOhm
Wirkungsgrad	ฑ		72	%
Modulationsgrad	m		100	%
Grenzwerte				
Frequenz	f	max.	30	MHz
Anodenspannung bei f ≤ 20 MHz	U _a	max.	10	kV
bei f 4 30 MHz	u a.	max.	8	kV
Anodenspannungsmodulation	a		Ŭ	IV.
bei f ≤ 20 MHz	$^{\mathrm{U}}$ a mod	max.	7,5	kV
Anodenspitzenspannung				
bei f ≦ 20 MHz	U _{as}	max.	30	kV
Katodenspitzenstrom	ks	max.	25	A
Anodenstrom	$^{\mathtt{I}}\mathtt{a}$	max.	4	A
Gitterstrom	$I_{\mathbf{g}}$	max.	0,9	A
Anodenverlustleistung bei Luftkühlung	P	max.	6	kW
bei Wasserkühlung	Pa.	max.	12	kW
Gitterverlustleistung	Pg.	max.	350	W
Temperatur an den Glaseinschmelzungen	$g_{\rm gla}$	max.	180	°C
<u>Kapazitäten</u>				
Eingang	$^{\mathtt{C}}_{\mathtt{in}}$	ca.	50	рF
Ausgang	Cout	ca.	3	pF
Gitter/Anode	cg a	ca.	25	рF
Der Einschaltstromstoß darf 300 A nicht	übersch	reiten.		

¹⁾ teilweise durch Gitterwiderstand erzeugt.

SRL/W 314

Kühlung

Kühlluftstrom (bei P _n = 6 kW)	$oldsymbol{arPhi}_{\mathbf{k}\mathbf{l}}$			m^3/min^{1}
Kühllufteintrittstemperatur	9 _{kl in}		25	
Kühlluftaustrittstemperatur	$\vartheta_{\mathtt{kl}}$ out	à	140	°c
Druckabfall am Kühler	$\Delta_{ m p}$	ca.	200	mmWS

Luftstrommessung mit Rotamesser oder Prandtlschem Staurohr

Wasserkühlung mit destilliertem Wasser:

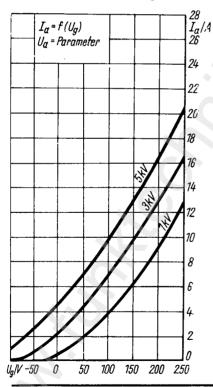
Kühlwasserstrom (bei P _a = 12 kW)	$\Phi_{\mathbf{k}\mathbf{w}}$	2	12	dm ³ /min
Kühlwasseraustrittstemperatur	$\vartheta_{ ext{kw out}}^{ ext{nu}}$	max.	60	o _C
Kühlwasserdruck	$p_{\mathbf{k}\mathbf{w}}$	max.	4,5	at

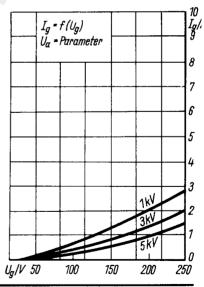
Wasserkühlung mit Rohwasser:

Wasserkuniung mit Ronwasser:				2		
Kühlwasserstrom (bei $P_{R} = 12 \text{ kW}$)	Φ_{low}	≧	15	am ³ /	'min	
Kühlwasseraustrittstemperatur	θ_{kw} out	max.	40	°C		
Kühlwasserdruck	P _{kw}		4,5			
Spezifischer Widerstand	9 _W	min.	2,5	103 0)hm cm	
des Kühlwassers						

Zusätzliche Kopfkühlung durch Druckluft

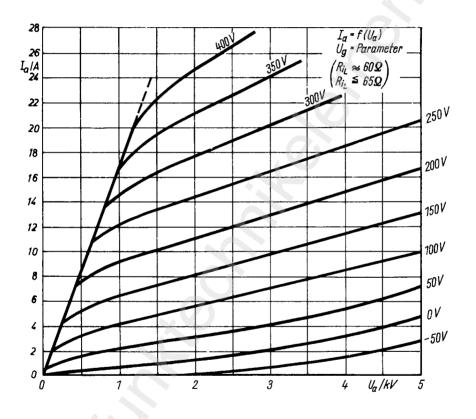
¹⁾bei einem Luftdruck $p_{kl} = 760$ Torr und unter Verwendung des Kühlkopfes SRW 42359.

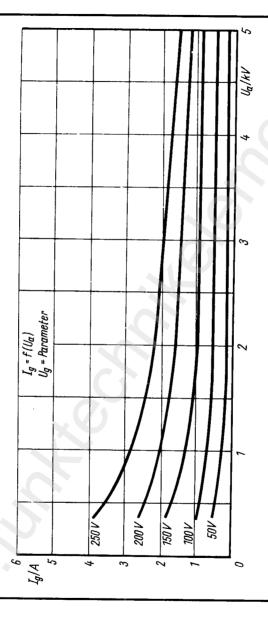



Spezielle Betriebsbedingungen

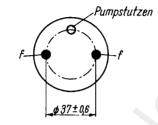
Da der Einschaltstromstoß 300 A nicht überschreiten darf, ist die Heizung stufenweise einzuschalten, oder es ist eine Begrenzung mit anderen geeigneten Mitteln vorzunehmen.

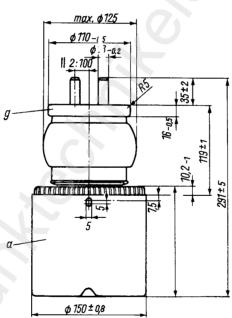
Der Anschluß der zweiten Gitterdurchführung ist auch bei Mittelwellenbetrieb aus Gründen der besseren Wärmeableitung zu empfehlen.


Bei Betrieb mit stark wechselnder Last, z. B. industrielle HF-Generatoren, ist eine Begrenzung des Gitterstromes mittels stromabhängiger Widerstände (Glühlampen) zu empfehlen, um die Gitterlast in den vorgeschriebenen Grenzen zu halten.



5/12.68 55





Die SRL 353 ist eine luftgekühlte Sendetriode mit konzentrischem Gitteranschluß. Sie wird für Gitterbasisschaltungen, insbesondere für UKW- und Fernsehsender sowie industrielle HF-Generatoren verwendet.

Betriebslage: vertikal Masse: ca. 7,8 kg Fassung: gerätegebunden Röhrenstandard: TGL 9467

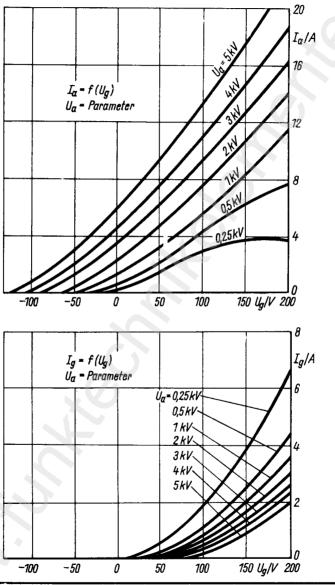
SRL 353

Heizung Direkt geheizte thorierte Wolframkatode Heizspannung Heizstrom	U _f I _f		5,3 150	V A
Statische Werte				
Verstärkungsfaktor bei U_a = 35 kV, I_a = 1 A	/u		43,5	
Steilheit bei $U_a = 3 \text{ kV}$, $I_a = 1 \text{ A}$'s		40	mA/V
<u>Betriebswerte</u>				
bei Verstärkung, Frequenzmodulation				
C-Betrieb, Gitterbasisschaltung				
Frequenz	f		88	\mathtt{MHz}
Anodenspannung	U _a		6	k₹
Gittervorspannung	-Ug		250	v
Anodenstrom	-		3	A
Gitterstrom	ıg		600	m.A.
Eingangsleistung (einschließlich durchgereichter Leistung)	Pin		1,6	kW
Ausgangsleistung	Pout		10	kW
Construction of the Constr				
Grenzwerte	f	max.	220	MHz
Frequenz Anodenspannung bei f ≤ 30 MHz	_	max.	8	kV
hei f ≤ 100 MHz	υ _a	max.	7	k∇
bei f ≦ 220 MHz	υa	max.	•	kV
	U _a	max.	4 , 5	A
Katodenstrom	I _k	max.	10	kW
Anodenverlustleistung	Pa P	max.	400	W
Gitterverlustleistung Temperatur an den Glaseinschmelzungen	Pg ggla	max.	180	°c
Tambarator ou den arabernacumersonsen	v_{g} la	mar .	.00	•

Der Einschaltstromstoß darf 200 A nicht überschreiten.

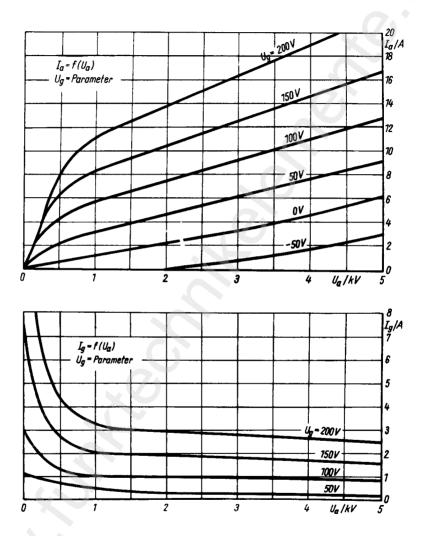
Eingang	C _{in}	62	рF
Ausgang	Cout	≦ 1,2	pF
Gitter/Anode	C _g a	33	pF

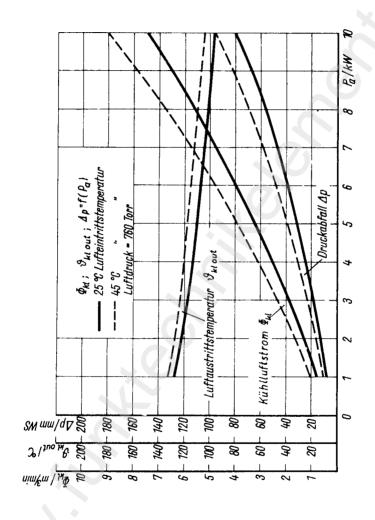
Kühlung


Die Zuführung der Kühlluft hat von der Seite der Elektrodenanschlüsse her zu erfolgen.

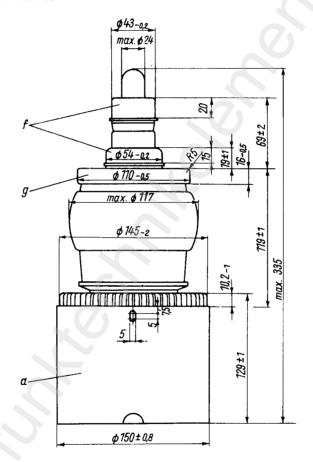
Kühlluftstrom	$\Phi_{ ext{kl}}$	7,5	9	m^3/min 1)
Lufteintrittstemperatur	$\vartheta_{\mathrm{kl}}^{\mathrm{kl}}$ in	25	45	o ^C
Kühlluftaustrittstemperatur	$\theta_{\mathrm{kl}}^{\mathrm{nl}}$ out	95	105	°c
Druckabfall	Δ_{p}	80	95	mmWS

Zur Künlung der Elektrodenanschlüsse ist ein schwacher Luftstrom von ϕ_{k1} ca. 0,2 m³/min erforderlich.


¹⁾ bei $P_{a \text{ max}}$ und einem Luftdruck $p_{kl} = 760$ Torr.



4/12.68 62



Die SRL 354 ist eine luftgekühlte Sendetriode mit konzentrischen Elektrodenanschlüssen. Sie wird für Gitterbasisschaltungen, insbesondere für UKW- und Fernsehsender sowie industrielle HF-Generatoren verwendet.

Betriebslage: vertikal Masse: ca. 8 kg

Fassung: gerätegebunden Röhrenstandard: TGL 9468

SRL 354

Heizung			
Direkt geheizte thorierte Wolframkatode			
Heizspannung	Մ _Ք	9	V
Heizstrom	I _P	160	A
	_		
Statische Werte			
Verstärkungsfaktor bei $U_a = 24$ kV, $I_a = 1$ A	/II	40	
Steilheit bei U = 3 kV, I = 1 A	' s	35	mA/V
a • a			
Betriebswerte			
bei Fernsehbetrieb (Schwarzpegel)			
Frequenz	f	170	MHz
Bandbreite	В	10	MH2
Anodenspannung	\overline{v}_{a}	3,7	k٧
Gittervorspannung	-Ug	55	٧
Anodenstrom	Ia	3,4	A
Gitterstrom	Ig	0,9	A
Eingangsleistung	Pin	1,2	kW
Ausgangsleistung	Pout	5,3	kW
Ausgangsleistung für Synchronisationspegel	Pout	10	kW
Betriebswerte			
bei HF-Verstärkung, Frequenzmodulation,			
C-Betrieb, Gitterbasisschaltung			
Frequenz	f	88	MHz
Anodenspannung	U _a	6	kV
Gittervorspannung	-ug	250	v
Anodenstrom	± A	ca. 3	A
Gitterstrom	I g	0,55	A
Eirgangsleistung	^P in	1,6	kW
Ausgangsleistung	Pout	10	kW

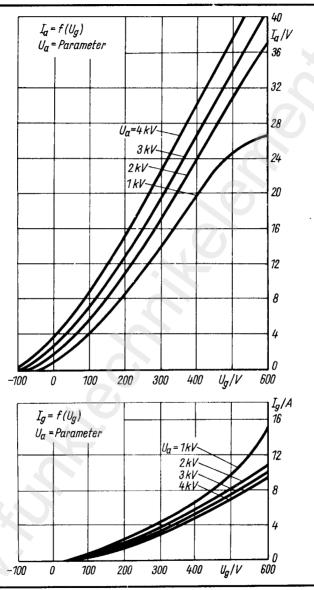
Grenzwerte				
Frequenz	f	max.	220	MHz
Anodenspannung bei f = 30 MHz	$^{\mathtt{U}}\mathbf{a}$	max.	7	k٧
bei $f \leq 100 \text{ MHz}$	$\sigma_{\mathbf{a}}$	mex.	6	kV
bei $f \leq 220 \text{ MHz}$	$\overline{\mathtt{U}}_{\mathbf{a}}^{-}$	max.	4,5	k٧
Katodenstrom	I _k	max.	8	A
Anodenverlustleistung	Pa	max.	10	kW
Gitterverlustleistung bei f ≤ 100 MHz	Pg	max.	400	W
bei f ≤ 220 MHz	Pg	max.	350	W
Temperatur an den Glaseinschmelzungen	$\mathscr{G}_{\mathtt{gla}}$	max.	180	oc

Der Einschaltstromstoß darf 270 A nicht überschreiten.

Kapazi	täten
--------	-------

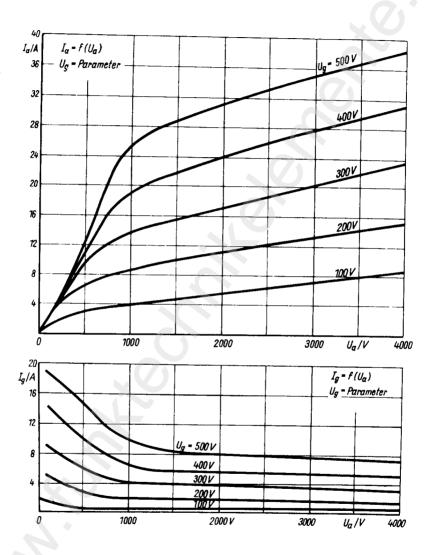
Eingang	° _{in}		56	рF
Ausgang	Cout	₹	1,1	pF
Gitter/Anode	c _{g a}		28	pF

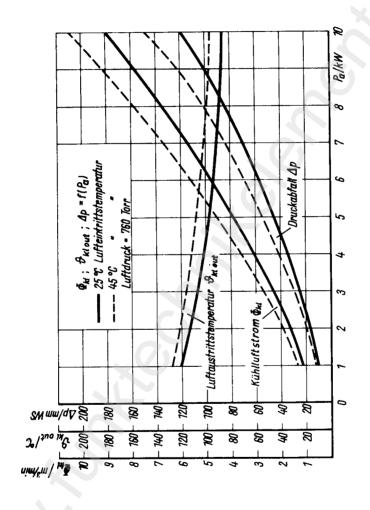
Kühlung


Die Zuführung der Kühlluft hat von der Seite der Elektrodenanschlüsse her zu erfolgen.

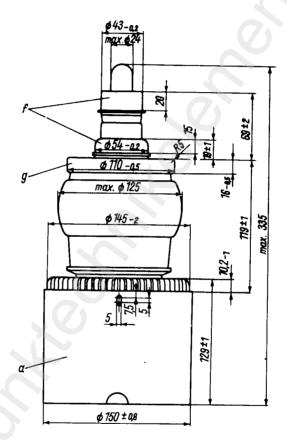
Kühlluftstrom	Φ_{kl}	9	10,5	m^3/min 1)
Kühllufteintrittstemperatur	$v_{\rm kl~in}$	25	45	°C
Kühlluftaustrittstemperatur	v _{kl out}	85	95	oc
Druckabfall	$\Delta_{\rm D}$	120	15 0	mmWS

Zur Kühlung der Elektrodenanschlüsse ist ein schwacher Luftstrom von $\phi_{\rm kl}$ ca. 0,2 m³/min erforderlich.


¹⁾ bei $P_{a \text{ max}}$ und einem Luftdruck von $p_{kl} = 760$ Torr.



4/12.68 68



Die SRL 364 ist eine luftgekühlte Sendetriode für die Nachrichtentechnik. Sie ist insbesondere für UKW- sowie Fernsehbetrieb verwendbar. Die Röhre ist vollkonzentrisch aufgebaut und dadurch besonders für Gitterbasisschaltung geeignet.

Betriebslage: vertikal Masse: ca. 10 kg Fassung: gerätegebunden Röhrenstandard: TGL 9469

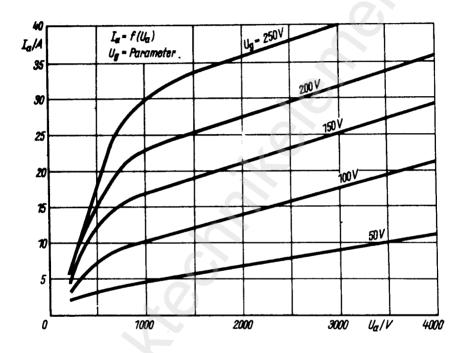
Heizung				
Direkt geheizte thorierte Wolframkatode				
Heizspannung	υ _f		11,5	v
Heizstrom	I.		73	A
	_			
Statische Werte				
Verstärkungsfaktor			52	
bei $U_a = 24 \text{ kV}$, $I_a = 1 \text{ A}$ Steilheit bei $U_a = 4 \text{ kV}$, $I_a = 1 \text{ A}$	/u S		55	mA/V
Steilheit bei $U_a = 4 \text{ kV}$, $I_a = 1 \text{ A}$	5		22	IIIA/ V
Betriebswerte				
Hochfrequenzverstärkung, annähernd B-Be	trieb,			
Gitterbasisschaltung				
Frequenz	f		175	MHz
Bandbreite	В		5,5	MHz
Anodenspannung	$\sigma_{\mathbf{a}}$		4	kV
Gittervorspannung	~ ∪ _{&}		60	A
Anodenstrom	I_		4,6	A
Gitterstrom	Ig		0,96	A
Eingangsleistung	Pin		1,5	kW
Ausgangsleistung	Pout		14	kW
Grenzwerte	۰		000	3.077
Frequenz	f	max.	220	MHz
Anodenspannung bei f ≤ 100 MHz	υ _a	max.	5	kV
bei $f = 220 \text{ MHz}$	U _a	max.	4	kV
Katodenstrom	ı _k	max.	8	A
Anodenverlustleistung	Pa.	max.	10	kW
Gitterverlustleistung bei f ≦ 100 MHz	ν,	max.	350	₩
bei f = 220 MHz	-g	max.	250	W O
Temperatur an den Glaseinschmelzungen	$\theta_{\mathtt{gla}}$	max.	180	°C

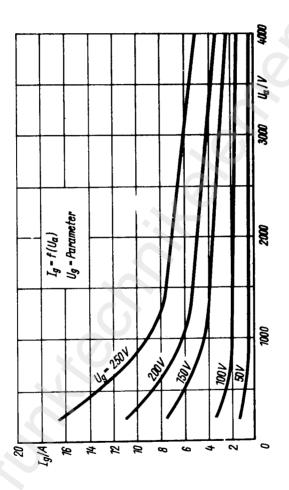
Der Einschaltstromstoß darf 120 A nicht überschreiten.

Kapa	zit	äten

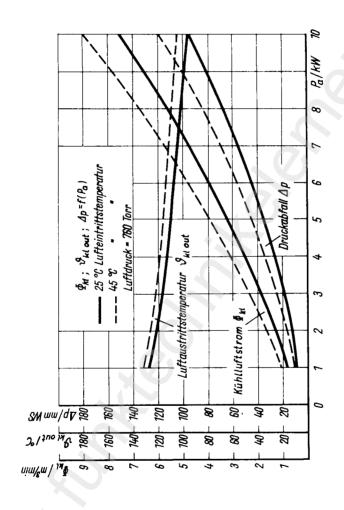
Eingang	$\mathtt{c}_{\mathtt{in}}$	5875	pF
Ausgang	Cout max	. 1	pF
Gitter/Anode	C _g a	2733	pF

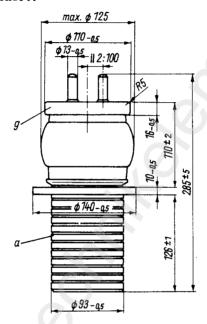
Kühlung

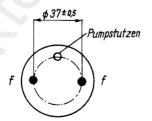

Die Zuführung der Kühlluft hat von der Seite der Elektrodenanschlüsse her zu erfolgen.


Kühlluftstrom (bei P _a = 10 kW auf Normal- zustand der Luft bezogen: 760 Torr und 25 °C)	$\phi_{ ext{kl}}$	7,5	9	m ³ /min 1)
Kühllufteintrittstemperatur	g _{kl in}	25	45	
Kühlluftaustrittstemperatur	\$ kl out	95	105	o G
Druckabfall	⊿p	95	120	mmWS

Zur Kühlung der Elektrodenanschlüsse ist ein schwacher Luftstrom von $\Phi_{\rm kl}$ ca. 0,2 m³/min erforderlich.


¹⁾ bei $P_{a \text{ max}}$ und einem Luftdruck $p_{kl} = 760$ Torr.





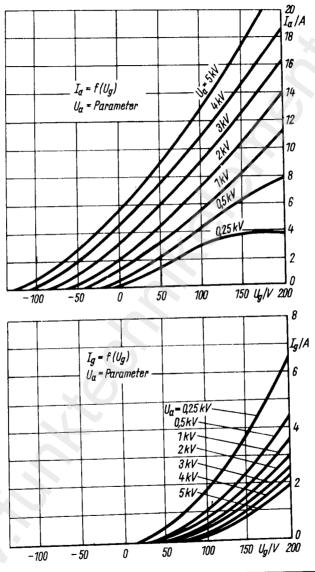
Die SRW 353 ist eine wassergekühlte Sendetriode mit konzentrischem Gitteranschluß. Sie wird für Gitterbasisschaltungen, insbesondere für UKW- und Fernsehsender sowie industrielle HF-Generatoren verwendet.

Betriebslage: vertikal Masse: ca. 2,7 kg Fassung: gerätegebunden Röhrenstandard: TGL 9471

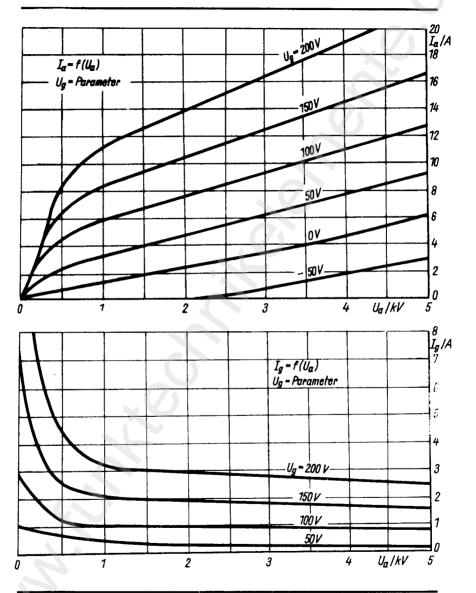
SRW 353

Heizung			
Direkt geheizte thorierte Wolframkatode			
Heizspannung	Ű f	5,3	V
Heizstrom	If	150	A
Statische Werte			
that is the second of the seco			
Verstärkungsfaktor bei $U_p = 35$ kV, $I_p = 1$ A	_/ u	43.5	
Steilheit bei $U_n = 3 \text{ kV}$, $I_n = 1 \text{ A}$'s	40	mA/V
a ,			
Betriebswerte			
bei Selbsterregung, C-Betrieb, Katodenb	asisschal	tung	
Frequenz	f	400	kHz
Anodenspanning	n ^e	7	kV
Gittervorspannung	-U_	300	v
Anodenstrom	ıa	4,5	A
Gitterstrom	$= r_g$	0,5	A
Ausgangsleistung	Pout	20	kW
	Q:21)		
Grenzwerte			
Frequenc	f	max. 220	MHz
Anodenspannung bei f ≤ 30 MHz	u _a	max. 8	kV
bei f ≤ 100 MHz	^U a	max.	kV
bei f ≤ 220 MHz	U a	max. 4,5	kV
Katodenstrom	.i. _k .	max.	5 A
Anodenverlustleistung	Pn	max. 15	kW (
Gitterverlustleistung	Pg	max. 400	
Temperatur an den Glaseinschmelzungen	$g_{\mathrm{gla}}^{\mathrm{s}}$	max. 180	o ₀ 1
	£ .1.C4		

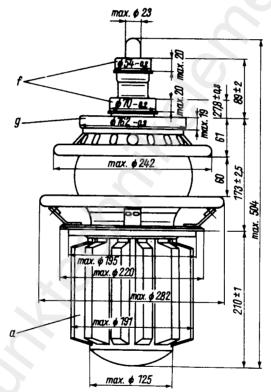
Der Einschaltstromstoß darf 200 A nicht überschreiten.



¹⁾ Ein verteilter, schwacher Luftstrom in axialer Richtung auf die Katodenanschlußstifte ist hierfür meist erforderlich.


Kapazitäten Eingang Ausgang Gitter/Anode	C _{in}	59	pf
	C _{out}	0,8	pf
	C _{g a}	35	pf
Kühlung Kühlwasserstrom Kühlwasseraustrittstemperatur Kühlwasserdruck	∲kw ∳kw out ^p kw	15 max. 65 max. 6	dm ³ /min ²) OC at

²⁾ bei P_{a max}



Die SRV 355 ist eine verdampfungsgekühlte Sendetriode mit koaxialen Elektrodendurchführungen. Die Röhre kann in NF-, HF- und Oszillatorschaltungen eingesetzt werden. Sie ist hauptsächlich zur Bestückung von Senderendverstärkern der Nachrichtentechnik im Kurzund Mittelwellengebiet sowie für Industriegeneratoren oder Modulationsstufen vorgesehen. Die Röhre ist mit ihrem koaxialen Aufbau speziell für den Einsatz in Gitterbasisschaltungen geeignet.

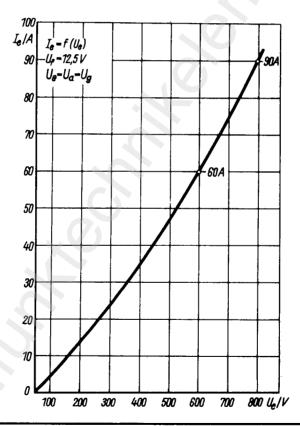
Betriebslage: vertikal Masse: ca. 24,5 kg Fassung: gerätegebunden Röhrenstandard: TGL 200-8015

Heizung			
Direkt geheizte thorierte Wolframkatode	1		41
Heizspannung	υ _f	12,5	V 1)
Heizstrom	I _f	180	A
Statische Werte			
Verstärkungsfaktor	an	77	
bei $U_a = 35kV$, $I_a = 3$ A	/u	57	4 /77
Steilheit bei $U_a = 4 \text{ kV}$, $I_a = 3 \text{ A}$	S	21	mA/V
Betriebswerte			
bei B-Betrieb, Anodenspannungsmodulatio	o <u>n</u>		
Frequenz	f	1	MHz
Anodenspannung	υa	10	kV
Gittervorspannung	-0	150	v
Anodenstrom	Ia	6	A
Gitterstrom	Ig	2,3	A
Eingangsleistung	Pin	1,4	kW
Ausgangsleistung	Pout	50	kW
	043		
Grenzwerte			
Frequenz	f	max. 30	MHz
Anodenspannung bei f ≤ 30 MHz	U _a	max. 12	k₹
Anodenspannungsmodulation	Ua mod	max. 10,5	kV
Katodenstrom	ı,	max. 15	A
Anodenverlustleistung	P.	max. 60	kW
Gitterverlustleistung	Pg	max. 1,5	kW
Temperatur an den Glaseinschmelzungen	$g_{\mathrm{gla}}^{\mathrm{s}}$	max. 180	°C
	g-g-a		

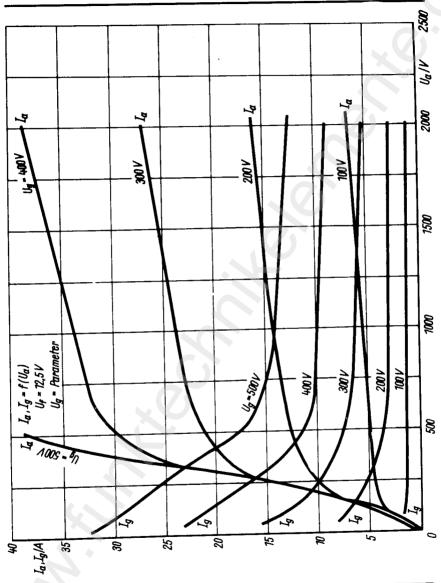
Der Einschaltstromstoß darf 270 A nicht überschreiten.

¹⁾ Die Heizspannung ist auf den angegebenen Wert einzuregeln.
Durch Spannungsschwankungen darf die Heizspannung kurzzeitig
(5 mal 5 min in 24 Betriebsstunden), höchstens ± 5 % vom Nennwert abweichen, da sonst eine Minderung der Lebensdauer eintritt. Die dauernd zulässige Abweichung darf ± 2 % betragen.

Kap	az	it	ät	en

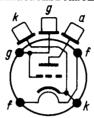

•			
Eingang		$\mathtt{c}_{\mathtt{in}}$	112 pF
Ausgang	,	Cout	≤ 1,6 pF
Gitter/Anode		Cga	66 pF

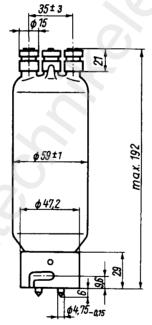
Kühlung


Verdampfungskühlung

Kühlluftstrom am Gitteranschlußring

 $\phi_{\rm kl}$ ca. 1 m³/min

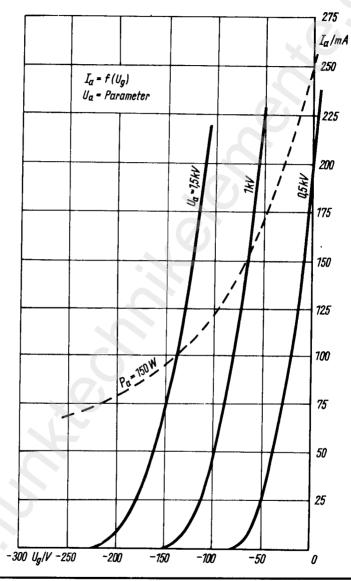


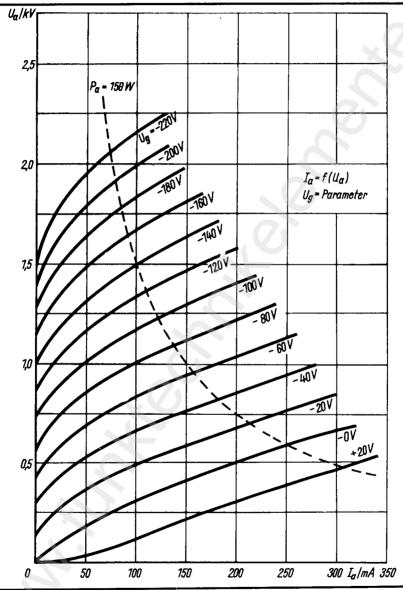


Die VRS 328 ist eine strahlungsgekühlte Verstärkertriode für MF-Verstärker und Modulationsstufen.

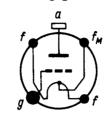
Betriebslage: senkrecht stehend, Sockel nach unten

Masse: ca. 350 g Fassung: 5-25 TGL 68-3


Röhrenstandard: TGL 200-8408

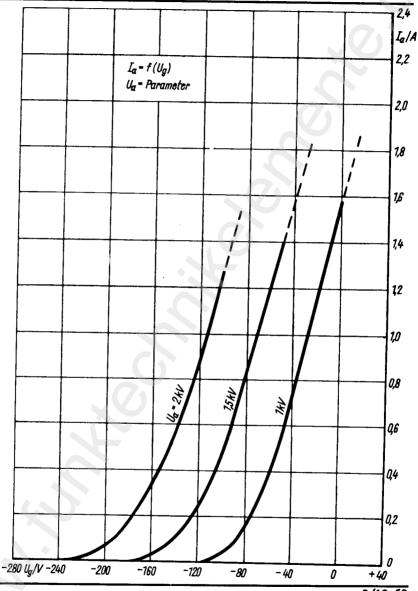

VRS 328

Heizung				
Indirekt geheizte Oxidkatode				
Heizspannung	Ŭ ₽		8	v
Heizstrom	Ir	ca.	1,6	A
	-			
Statische Werte				
Durchgriff bei U _n = 1,01,5 kV,I _n = 100 mA	D	ca.	12	%
Steilheit	•	ou.		,-
bei $U_n = 1,5 \text{ kV}, I_n = 80120 \text{ mA}$	S	ca.	3	mA/V
-				
Betriebswerte				
bei A-Betrieb	(//)		
Anodenspannung	U _a	1	1,5	kV
Gittervorspannung	-Ug	65	140	٧
Anodenstrom	Ia	150	100	mA
Grenzwerte				,
Frequenz	f	max.	3	MHz
Anodenspannung		max.	1,5	kV
Anodenspitzenspannung	U _a	max.	3.0	kV
Anodenstrom	Uas T	max.	150	mA.
Anodenverlustleistung	Ia	max.	150	W
Spanning zwischen Heizer und Katode	P a H	max.	75	₩ ₩
Gitterableitwiderstand	^U f k	max.	200	kOhm
(bei Aussteuerung im negativen Gitterspannungsbereich)	Rg	mer v	200	E.O.IIII
Temperatur am Kolben	9	max.	350	og
an der Anodenkappe	$g_{ t kolb}$	max.	120	°c
an den Stiften	θ _a	max.	120	o ^G
an den bull ven	$ heta_{ t stif}$	max.	120	·
Kapazitäten				
Eingang	$\mathtt{c_{in}}$		9	\mathbf{pF}
Ausgang	Cout		3	pF
Gitter/Anode	cg a		8	рF
	5 4			



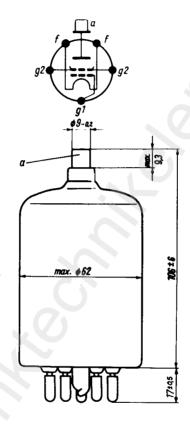


Die VRS 331 ist eine strahlungsgekühlte Verstärkertriode.


Betriebslage: senkrecht stehend Masse: ca. 900 g Fassung: gerätegebunden Röhrenstandard: TGL 200-8409

VRS 331

Heizung				
Direkt geheizte thorierte Wolframkatode				
Heizspannung	${}^{\overline{\mathbf{U}}}\mathbf{f}$		12,6	V
Heizstrom	I _f	ca.	17	A
Statische Werte				
Durchgriff	_			a .
bel U _g = 1,251,75 kV, I _g = 300 mA	D	ca.	10	%
Steilheit bei $U_n = 1,5 \text{ kV}, I_n = 250350 \text{ mA}$	S	ca.	14	mA/V
a ijy mi, a zyottiyyo ma	-	0	• •	
Betriebswerte				
A-Arbeitspunkt				
Anodenspanning	π		1.5	kV
Gittervorspannung	Ua =11		115	ν.
Anodenstrom	I		300	m.A.
Anodenstrom	-a		500	ша
Grenzwerte				
Frequenz	f	max.	20	MHz
Anodenspannung		max.	2.5	kV
Anodenspitzenspannung	Ua.	max.	روء 5	k∇
Katodenstrom	U as	max.	500	m.A.
Anodenverlustleistung	I _k	max.	450	ma W
Gitterableitwiderstand	P _a		_	••
(bei Aussteuerung im negativen	$^{ m R}_{m{g}}$	max.	30	kOhm
Gitterspannungsbereich)				_
Temperatur am Kolben	kolb	max.	350	°C
an der Anodenkappe	θ _a	max.	140	°C
an den Stiften	$\vartheta_{\mathtt{stif}}$	max.	140	°C
<u>Kapazitäten</u>				
Eingang	$^{\mathtt{C}}\mathtt{in}$		40	рF
Ausgang	Cout		4	рF
Gitter/Anode	Cg a		20	рF
	გ ⊶			


VRS 331

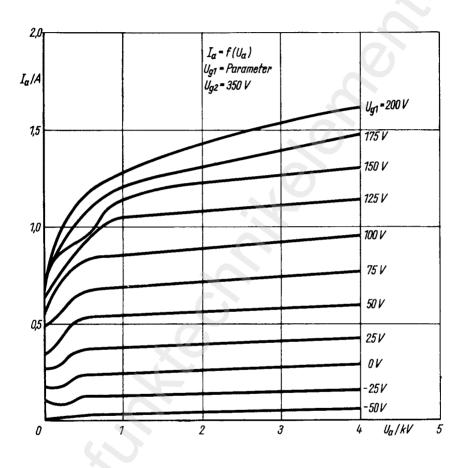
Heizung				
Direkt geheizte thorierte Wolfran				
Heizspannung	υ _f		12,6	A
Heizstrom	I _f	ca.	17	A
Statische Werte				
Durchgriff bei $U_a = 1,251,75 \text{ kV}$, $I_a = 30$	00 mA D	ca.	10	%
Steilheit bei $U_a = 1,5 \text{ kV}, I_a = 250350$	mA S	ca.	14	mA/V
Betriebswerte				
A-Arbeitspunkt				
Anodenspannung	U _a		1,5	kV
Gittervorspannung	-0 _g		115	V
Anodenstrom	Ia		300	mA.
Grenzwerte				
Frequenz	f	max.	20	MHz
Anodenspannung	$\overline{v}_{\mathbf{a}}$	max.	2,5	kV
Anodenspitzenspannung	U as	max.	5	kV
Katodenstrom	ı _k	max.	500	m.A
Anodenverlustleistung	$\mathbf{P}_{\mathbf{a}}$	max.	450	W
Gitterableitwiderstand (bei Aussteuerung im negati Gitterspannungsbereich)		max.	30	kOhm
Temperatur am Kolben	kolb	max.	350	°C
an der Anodenkappe	$\vartheta_{\mathbf{a}}^{\mathbf{notb}}$	max.	140	o _C
an den Stiften	Pstif	max.	140	o _C
Kapazitäten				
Eingang	$\mathtt{c}_{\mathtt{in}}$		4 0	рF
Ausgang	Cout		4	рF
Gitter/Anode	c g a		20	рF
	o 			

Die SRS 455 ist eine strahlungsgekühlte Sendetetrode. Sie wird für HF- und NF-Verstärkung sowie als Modulator, insbesondere für UKW-Sender verwendet.

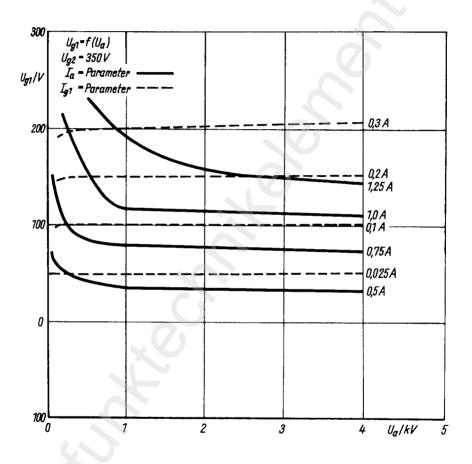
Betriebslage: senkrecht stehend Masse: ca. 145 g Sockel: TGL 200-8339 Bl.1

Fassung: 5-31

Röhrenstandard: TGL 9477


SRS 455

Heizung				
Direkt geheizte thorierte Wolframkatode				
Heizspannung	${f v_f}$		5	V
Heizstrom	I _f	ca.	6,5	A
Statische Werte				
Schirmgitterdurchgriff	D_{g2}		16	%
bei $U_a = 2,5 \text{ kV}$	0-			
υ _{g2} = 250350 V				
$I_a^{8^2} = 40 \text{ mA}$				
Steilheit bei U _a = 2,5 kV	S		2,2	mA/V
u _{g2} = 350 V				
$I_a = 40 \text{ mA}$				
a.				
Betriebswerte				
bei HF-Verstärkung, C-Betrieb				
Frequenz	f		100	MHz
Anodenspannung	U _a		2500	V
Schirmgitterspannung	a. II		300	v
Gittervorspannung	^U g2		150	
	-ug1	ca.	160	
Anodenstrom	I a	ca.	50	
Schirmgitterstrom	Ig2	Ca.	18	
Gitterstrom	Ig1		-	W
Anodenverlustleistung	-a		125	
Ausgangsleistung	$^{\mathtt{P}}_{\mathtt{out}}$		275	W
Kapazitäten				
Eingang	$^{\mathtt{C}}_{\mathtt{in}}$		11,9	рF
Ausgang	$^{\mathrm{C}}_{\mathtt{out}}$		3,5	\mathbf{pF}
Gitter 1/Anode	C _{g1} a	2	0,2	\mathbf{pF}



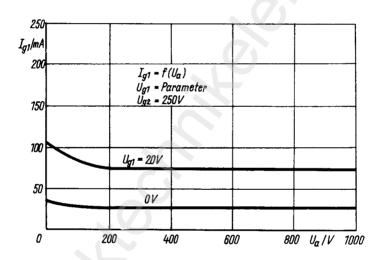
Grenzwerte								
Frequenz	f	≨	120	₹	150	≦	200	MHz
Anodenspannung	${}^{\mathrm{U}}\mathbf{a}$	max.	3000	max.	2500	max.	2000	٧
Anodenspannungs- modulation	Ua. mod	max.	2500		-		•	v
Schirmgitterspannung	Ug2	max.	600	max.	500	max.	400	7
Gittervorspannung	- ^U g1	max.	500	max.	500	max.	500	٧
Gitterspitzenspannung		max.	400	max.	330	max.	270	٧
Anodenspitzenstrom	Ias	max.	1,1	max.	1,1	max.	1,1	A
Katodenstrom	I _k	max.	0,35	max.	0,35	max.	0,35	A
Anodenverlustleistung		max.	125	max.	125	max.	125	W
Schirmgitterverlust- leistung	P _{g2}	max.	20	max.	20	max.	20	W
Gitterverlust- leistung	Pg1	max.	4	max.	4	max.	4	W
Temperatur	•							
am Anodenanschluß	θ _a					max.	220	°c
am Kolben	kolb					max.	250	°C
an den Stiften	Stif					max.	180	°C

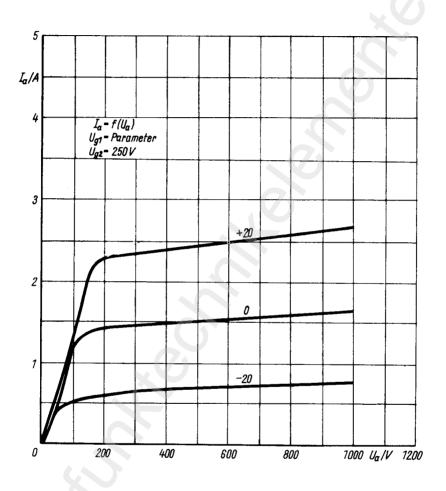
Die SRS 461 ist eine strahlungsgekühlte Sendetetrode für HF- und NF-Verstärkung. Sie ist als Modulator und Oszillator, insbesondere für die Nachrichtentechnik, für industrielle HF-Generatoren und in elektromedizinischen Geräten verwendbar.

Betriebslage: senkrecht stehend Masse: ca. 220 g Sockel: TGL 200-8339 Bl.1

Fassung: 5-31

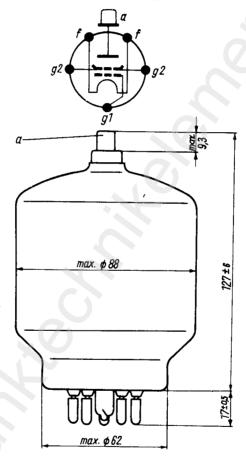
Röhrenstandard: TGL 200-8228


SRS 461


Heizung				
Indirekt geheizte Oxidkatode			V	
Heizspannung	n t		€,3	V
Heizstrom	If	ca.	4,4	A
Statische Werte Schirmgitterdurchgriff bei U _a = 750 V, U _{g2} = 250 V, I _a = 100 mA Steilheit bei U _a = 750 V, U _{g2} = 250 V, I _a = 100 mA Betriebswerte	D ₂	0	17 , 5	% m A/ V
bei HF-Verstärkung, C-Betrieb				
requenz	2		30	MHz
nodenspannung	Ua		750	Λ
Schirmgitterspannung	ug2		250	Δ
Gittervorspannung			90	Δ
Anodenstrom	Tg1 Ia		385	mA
Schirmgitterstrom	Ig2	ca.	25	m.A
Gitterstrom	Ig1		7	m.A.
Anodenverlustleistung	Pa.		85	W
Ausgangsleistung	Pout		200	W
Wirkungsgrad	η		70	B
	•			
Frenzwerte				
Prequenz	f	max.	30	MHz
Anodenspannung	$^{\mathrm{U}}\mathbf{a}$	max.	825	Δ
Schirmgitterspannung	Ug2	max.	300	A
lttervorspannung	-Ug1	melx.	150	V
Anodenstrom	[⊥] a	max.	400	m.A.
Modenverlustleistung	Pa	max.	100	W
"chirmgitterverlustleistung	P _{g2}	max.	12	W
Spannung zwischen Heizer und Katode	^U f k	max.	125	Ψ
Gitterableitwiderstand	R _g 1	max.	25	kOhm
Temperatur am Anodenanschluß	^γ a.	max.	220	°C
am Kolben	kolb	max.	250	o ^C oC
an den Stiften	$\vartheta_{ t stif}$	max.	180	-0

Kapazitäten

Eingang	C _{in}	31	рF
Ausgang	Cout	12,7	рF
Gitter 1/Anode	C _{g1} a	0,9	pF



Die SRS 456 ist eine strahlungsgekühlte Sendetetrode. Sie wird für HF- und NF-Verstärkung, insbesondere bei UKW-Sendern und für industrielle HF-Generatoren verwendet.

Betriebslage: vertikal

Masse: ca. 185 g Sockel: TGL 200-8339 Bl.1

Fassung: 5-31

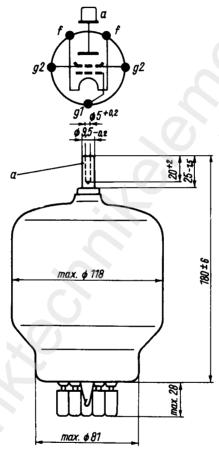
Anschlußkappe: Form A 2, TGL 70-124

Heizung					
Direkt geheizte thorierte Wolframka					
Heizspannung	${}^{{}^{{}^{{}^{\!$			5	V
Heizstrom	ľ			14,2	A
Statische Werte					
Anodenspannung	U _a			3	kV
Schirmgitterspannung	Upp			500	v
Anodenstrom	ıa			100	m.A
Steilheit	S			4	mA/V
Schirmgitterverstärkungsfaktor	/ ^u g2 g1			5,1	
	, 6- 8.				
Betriebswerte					
als HF-Verstärker (C-Betrieb, Teleg	rafie A	1; f =	75 N	Hz)	
Anodenspannung	Ua	4	3	2,5	k∇
Schirmgitterspannung	000	500	500	500	V
Gittervorspannung	-0g1	225	180	150	V
Gitterspitzenspannung	ປຶ g1 s	303	265	200	V
Anodenstrom	Ia	312	345	300	mA
Schirmgitterstrom	I _{g2}	45	60	60	mA
Gitterstrom	Ig1	9	10	9	mA
Eingangsleistung	Pin	2,7	2,7	1,8	W
Anodenverlustleistung	Pa	248	235	175	W
Ausgangsleistung	Pout	1000	800	575	W
	out				
Kapazitäten					
Eingang	Cin			12,7	рF
Ausgang	Cout			5,8	\mathbf{pF}
Gitter 1/Anode	Cat		₹	0,22	рF

<u>Grenzwerte</u>						
Frequenz	f	≦	75	≦	110	MHz
Anodenspannung	$\mathtt{U}_{\mathbf{a}}$	max.	4	max.	3,3	kΨ
Anodenspannungsmodulation	Ua mod	max.	3,2		-	kV
Anodenspitzenspannung	Uas	max.	12,8		-	kV
Schirmgitterspannung	Ug2	max.	600	max.	500	v
Gittervorspannung	-Ug1	min.	500	min.	400	v
Gitterspitzenspannung	ប ^{្ត} _g1s	max.	500	max.	400	v
Anodenspitzenstrom	Ias	max.	2	max.	2	Â
Xatodenstrom	$\mathbf{I}_{\mathbf{k}}$	max.	450	max.	450	m.A.
Anodenverlustleistung	r _a	mex.	400	max.	400	W
Schirmgitterverlustleistung	P_{g2}	max.	35	max.	35	M
Gitterverlustleistung	r _{g1}	max.	8	max.	8	W
Temperatur						
am Anodenanschluß	$g_{\mathbf{g}}$			max.	220	°c .
am Kolben	9 kolb			max.	250	o _C 1)
an den Stiften	v _{stif}			max.	180	$^{\rm C}$

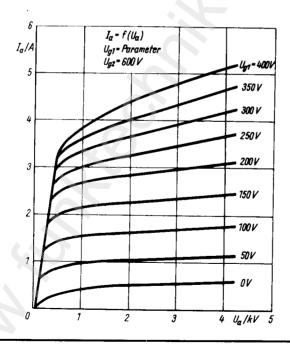
Spezielle Betriebsbedingungen

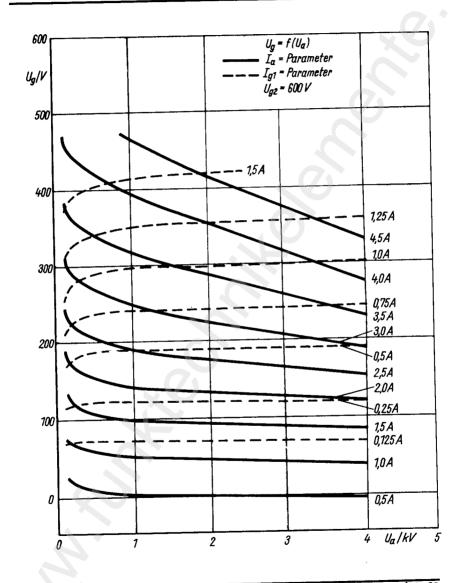
Bei Betrieb in der Nähe der Grenzwerte und bei Frequenzen >50 MHz kann bei ungünstigem Einbau ein schwacher Luftstrom gegen den Fuß und den Anodenanschluß der Röhre erforderlich werden.


Das Schirmgitter ist durch zwei Stifte am Boden der Röhre herausgeführt. Um ein unzulässiges Erwärmen dieser Stifte zu verhindern, müssen die zwei Kontakte der Fassung miteinander verbunden sein.

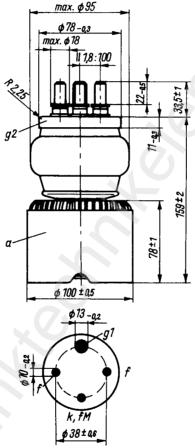
¹⁾ in unmittelbarer Nähe der Anode.

Die SRS 457 ist eine strahlungsgekühlte Sendetetrode. Sie wird für HF- und NF-Verstärkung, insbesondere in UKW-Sendern, in der Nachrichtentechnik und in industriellen HF-Generatoren verwendet.


Betriebslage: senkrecht stehend Masse: ca. 450 g Sockel: 5-38 TGL 200-8340 Bl.1 Fassung: 5-38 TGL 200-3534 Röhrenstandard: TGL 9479


Heizung				
Direkt geheizte thorierte Wolframkatod	.e			
Heizspannung	υ _e		10	V
Heizstrom	ī		ca. 10	A
	_			
Statische Werte				
Schirmgitterdurchgriff	D_{g2}		10,5	%
bei $U_{\mathbf{a}} = 2,5 \text{ kV}$	Ū			
$U_{g2} = 600700 \text{ V}$ $I_{g} = 120 \text{ mÅ}$				
I = 120 mA				
Steilheit bei U _a = 2,5 kV	S		5,5	mA/V
U _{g2} = 600 V				
$I_{\mathbf{g}}^{\mathbf{g}^2} = 120 \text{ mA}$				
a.				
Betriebswerte				
bei HF-Verstärkung, C-Betrieb, Telegra	afie A 1			
Frequenz	r á	35	82	MHz
Anodenspannung	U _a	4000	4000	V
Schirmgitterspannung	U _o o	600	600	٧
Gittervorspannung	-U _{g1}	200	200	V
Anodenstrom	I _a	450	425	mA
Schirmgitterstrom	I _{g2}	90	85	m.A
Gitterstrom	±σ1	40	40	mA
Anodenverlustleistung	Pa	500	500	W
Ausgangsleistung	$^{\mathtt{P}}_{\mathtt{out}}$	1300	1200	W
Kapazitäten				
Eingang	$\mathtt{c}_{\mathtt{in}}$		24	рF
Ausgang	Cout	,	8,3	_
Gitter 1/Anode	^C g1 a	₹	0,3	рF

Grenzwerte						
Frequenz	f	₹	75	max.	110	MHz
Anodenspannung	${\tt U}_{{\bf a}}$	max.	5000	max.	4500	V
Schirmgitterspannung	v_{g2}	max.	700	max.	600	٧
Gittervorspannung	-υ _{g1}	max.	400	max.	350	V
Anodenspitzenstrom	Ias	max.	3,8	max.	3,3	A
Katodenstrom	I _k	max.	0,7	max.	0,6	A
Anodenverlustleistung	Pa.	max.	500	max.	500	W
Schirmgitterverlustleistung	P_{g2}	max.	65	max.	65	W
Gitterverlustleistung	Pg1	max.	25	max.	25	W
Temperatur am Anodenanschluß	_					_
	$\theta_{\mathbf{a}}$			max.	220	°C
am Kolben	$\theta_{ ext{kolb}}$			max.	250	°C
an den Stiften	$ allet{ heta_{ ext{stif}}}$			max.	180	oC



Die SRL 459 ist eine luftgekühlte Sendetetrode mit konzentrischem Schirmgitteranschluß. Sie ist für den Betrieb in UKW- und Fernsehsendern geeignet.

Betriebslage: vertikal Masse: ca. 2,7 kg Fassung: gerätegebunden Röhrenstandard: TGL 9480

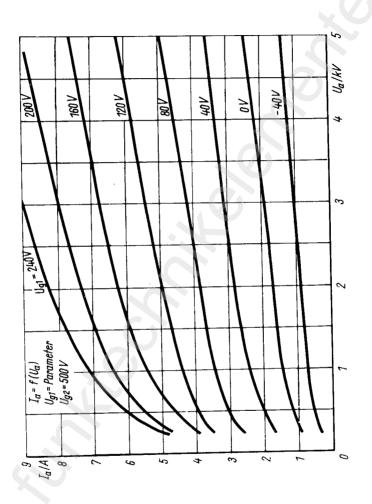
SRL 459

Heizung				
Direkt geheizte thorierte Wolframkatod	.e			
Heizspannung	υ _f		10	V
Heizstrom	I _f		46	A
Statische Werte				
Schirmgitterverstärkungsfaktor bei U _a = 3 kV, U _{g2} = 500 V, I _a = 0,7 A	/ ^u g2 g1		6	
Steilheit	s		15	mA/V
bei $U_a = 3 \text{ kV}$, $U_{g2} = 500 \text{ V}$, $I_a = 0,7 \text{ A}$,
Betriebswerte				
bei Hochfrequenzverstärkung				
Frequenz	r ≦	30	≦ 1 00	MHz
Anodenspannung	п	6	4	k∇
Schirmgitterspannung	π.	500	500	v
Gittervorspannung	~g2 -∏ .	200	180	. ▼
Gitterspitzenspannung	-Ug1	420	360	v V
Anodenstrom	gls	1.1	1.2	A
Schirmgitterstrom	Ia	75	150	mA
Gitterstrom	I _{g2}	133	115	mA
Eingangsleistung	_g1	31,5	40	W
Ausgangsleistung	n n	5	3	kW
Mungangareratung	fout	9	,	V.II
Grenzwerte				
Frequenz	f	max.	100	MHz
Anodenspannung bei f ≤ 30 MHz	${\tt U_a}$	max.	6	kV
bei $f \leq 100 \text{ MHz}$	$\overline{\mathtt{U}}_{\mathbf{a}}^{\mathrm{n}}$	max.	4	kV
Schirmgitterspannung	_g2	max.	600	V
Katodenstrom	$I_{\mathbf{k}}$	max.	1,8	A
Katodenspitzenstrom	Iks	max.	9	A
Anodenverlustleistung	$^{\mathtt{P}}\mathbf{_{a}}$	max.	2,5	kW
Schirmgitterverlustleistung	$P_{\sigma 2}$	max.	200	W
Gitterverlustleistung	Pg1	max.	80	W
Temperatur an den Glaseinschmelzungen	$ extcolor{g}_{ extcolor{gla}}$	max.	180	oc

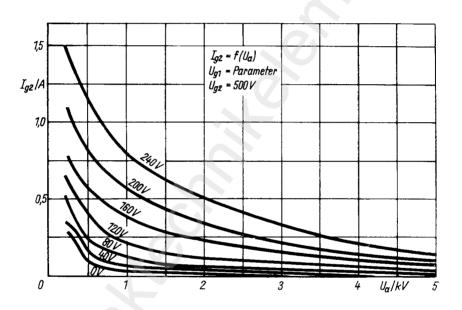
Der Einschaltstromstoß darf 70 A nicht überschreiten.

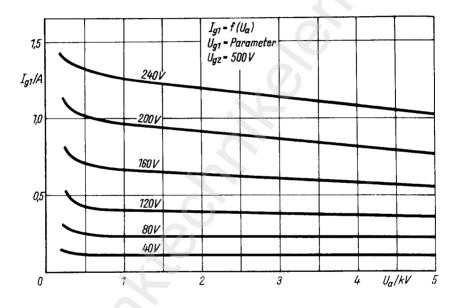
Kapazitäten

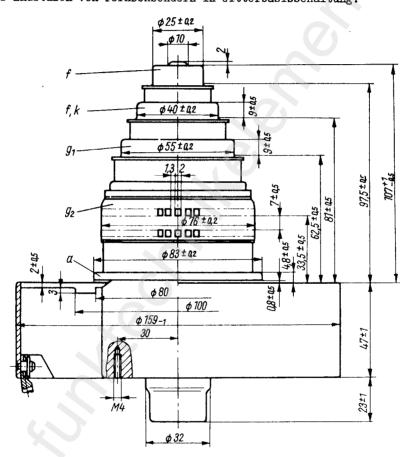
Eingang	Cin	ca.	50	рF
Ausgang	Cout	ca.	14	рF
Gitter 1/Anode	Cg1 a	ca.	1	pF


Kühlung

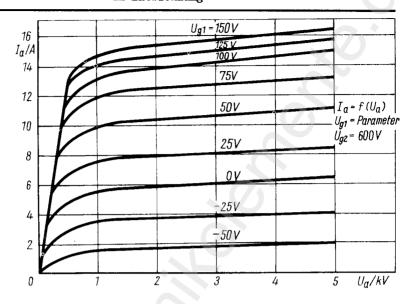
Kühlluftstrom	$\phi_{\mathrm{k}1}$	₹	3,5	$m^3/min^{1)}$
Druckabfall am Kühler	⊿ p	ca.	60	mmWS

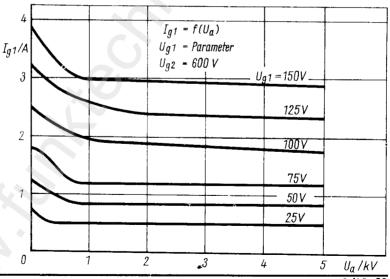

Luftstrommessung mit Rotamesser oder Prandtlschem Staurohr


¹⁾ bei $P_{a \text{ max}}$, einer Lufteintrittstemperatur θ_{kl} = 25 °C und einem Luftdruck p_{kl} = 760 Torr

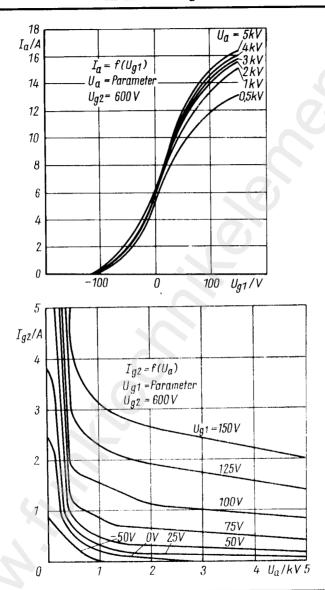


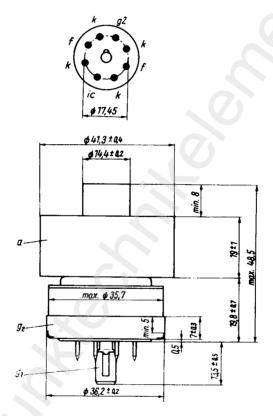
Die SRL 458 ist eine luftgekühlte Sendetetrode in Metall-Keramik-Ausführung mit konzentrischen Schirmgitter-, Steuergitter- und Katodendurchführungen. Sie ist besonders geeignet zur Bestückung der Endstufen von Fernsehsendern in Gitterbasisschaltung.


Betriebslage: vertikal Masse: ca. 4,7 kg Fassung: gerätegebunden



Heizung				
Direkt geheizte thorierte Wolframkatode	€			
Heizspannung	υ _f		4,1	V
Heizstrom	$^{\mathrm{I}}\mathbf{f}$		130	A
Statische Werte Steilheit bei U _a = 2 kV, U _{g2} = 450 V, I _a = 1 A Schirmgitterverstärkungsfaktor bei U _a =2 kV, U _{g2} =300500 V,I _a =1 A	s / ^u g2 g1		38 6	mA/V
Grenzwerte				
Frequenz	f	max.	790	MHz
Spannung zwischen Anode und Gitter 1	Ua g1	max.	5,2	kV
Spannung zwischen Gitter 2 und Gitter 1	[℧] g2 g1	max.	800	Ψ
Spannung zwischen Katode und Gitter 1	Uk g1	max.	300	V
Katodenstrom	1k	max.	3,6	A
Anodenverlustleistung	Pa	max.	10	kW
Schirmgitterverlustleistung	P _{g2}	max.	120	W
Gitterverlustleistung	Pg1	max.	30	M
Kapazitäten				
Katode/Gitter 1	Ck g1		53	pF
Katode/Anode	C _{k a}		0,09	pF
Gitter 1/Anode	Cg1 a		0,22	рF
Kühlung			_	
Kühlluftstrom	<pre> ø_{kl} </pre>	ea. 11	m ³ /n	in 1)
Druckabfall	⊿ _p ′	ca. 120	mmWS	;


¹⁾ bei $P_{a \text{ max}}$, einer Lufteintrittstemperatur θ_{kl} = 25 °C und einem Luftdruck P_{kl} = 760 Torr.



Die SRL 460 ist eine luftgekühlte, indirekt geheizte Tetrode in Metall-Keramik-Ausführung. Sie ist geeignet für den Einsatz in HF- und NF-Endverstärkerstufen sowie in Oszillator-, Frequenzvervielfacher- und Linearverstärker-Schaltungen.

Betriebslage: beliebig Masse: netto ca. 125 g brutto ca. 200 g

Sockel: 8-17/2, TGL 200-8344 Bl.1 Fassung: spezielle 8-polige Fassung

Röhrenstandard: TGL 200-8451

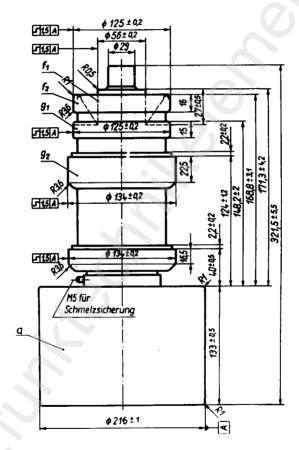
Heizung			
Indirekt geheizte Oxidkatode			
Heizspannung	Մ _f	6,0	V
Heizstrom	If	2,6	A
Anheizzeit	$\mathbf{t}_{\mathbf{A}}^{-}$	≥ 30	s
Statische Kennwerte			
Steilheit (bei U_a = 500 V, U_{g2} =250 V, I_a = 200 mA)	S	12	mA/V
Schirmgitterdurchgriff	D _{g2}	20	%
3	ge		
Betriebswerte			
HF-Klasse, C-Telegrafie			
Frequenz	f	220	MHz
Anodenspannung	Ua	2000	V
Schirmgitterspannung	Ug2	250	V
Gittervorspannung	-U _{Ø1}	90	٧
Anodenstrom	Ia.	25 0	m.A
Schirmgitterstrom	I _{g2}	14	mA
Gitterstrom	Ig 1	20	mA
Anodenverlustleistung	Pa'	110	W
Ausgangsleistung	Pout	320	w 1)
Wirkungsgrad	ท	80	%
	•		
Betriebswerte			
HF-Klasse AB, Einseitenbandverstärker	bei Einzelan	steuerung	I _{g1} =0
Frequenz	f	3	MHz
Anodenspannung	$_{-}^{\mathtt{U}}\mathbf{a}$	1,8	k٧
Schirmgitterspannung	$\sigma_{\rm g2}$	300	V
Gittervorspannung	- ^U g1	4 9	V
Gitterspannung (Effektivwert)	^U g1 eff	35	v
Anodenstrom	Ia	250	m.A
Schirmgitterstrom	I _{g2}	30	mA
Anodenverlustleistung	Pa	140	W
Ausgangsleistung	Pout	255	_W 1)
	040		

Außenwiderstand	$R_{\mathbf{a}}$		4350	Ohm
Wirkungsgrad	ขึ		67	%
Grenzwerte				
Frequenz	f	max.	500	MHz
Anodenspannung	U _a	max.	2000	Λ
Anodenstrom	Ia	max.	250	m.A.
Schirmgitterspannung	Ug2	max.	400	V
Gittervorspannung	-U _{g1}	max.	250	A
Anodenverlustleistung	$P_{\mathbf{a}}$	max.	250	W
Schirmgitterverlustleistung	P _{g2}	max.	12	W
Gitterverlustleistung	P _{e1}	max.	2	W
Gitterwiderstand	Rg1	max.	25	kOhm
Temperatur der MK-Verbindung	θ_{mk}	max.	250	°C
Anodentemperatur	$\vartheta_{\mathbf{a}}$	max.	250	°C
Kapazitäten (Katodenbasisschaltung)				
Eingang	$^{\mathtt{C}}_{\mathtt{in}}$	max.	14,5	pF
Ausgang	$^{\mathrm{C}}$ out	max.	4,5	pF
Anode/Gitter 1	Cag1	max.	0,06	pF
	Ü			
Kühlung				
Kühlluftstrom	$\pmb{\phi}_{ ext{kl}}$	C	,11 m	$\beta_{\min_{2}}$
Druckabfall am Kühler	$\Delta_{\mathbf{p}}$			nws 3)
dabei Temperatur der Metall-Keramik-Verbindung	$g_{ m mk}^{r}$	₹	250 °C	
Die Wille I I Ph. dest. man. Caladam middle man nach I.		Amad -	mondol	L . L

Die Kühlluft ist vom Schirmgitteranschluß zur Anode gerichtet.

Bei Verwendung von Luftzuführungsringen steigt der Druck auf 13 mmWS.

¹⁾ Abgegebene Leistung ohne Kreisverluste (Kreisverluste ca. 16%).


²⁾ bei $P_{a \text{ max}}$, einer Lufteintrittstemperatur \mathcal{S}_{kl} = 25 °C und einem Luftdruck p_{kl} = 760 Torr.

Spezielle Betriebsbedingungen

Der Nennwert der Heizspannung darf durch Schaltmittelstreuungen nicht mehr als ± 2 % schwanken. Abweichungen, die durch Netzspannungsschwankungen eintreten, dürfen kurzzeitig nicht mehr als ± 10 % vom Nennwert der Heizspannung betragen. Beim Betrieb der Röhre können negative Schirmgitterströme auftreten.

Die SRL 462 ist eine luftgekühlte Sendetetrode in Metall-Keramik-Technik mit konzentrisch ausgebildeten Schirmgitter-, Steuergitter- und Katodendurchführungen. Sie ist als HF-, NF-, Einseitenbandverstärker-, Oszillator- und Frequenzvervielfacherröhre geeignet.

Betriebslage: senkrecht Masse: 15,1 kg

Heizung					
Direkt geheizte thorier	te Wolfr	amkatode			
Heizspannung			^U f	10	V
Heizstrom			If	200	A
Statische Werte					_
Emissionsstrom	N 11		I _e	70	A
bei $\overline{U}_a = \overline{U}_{g1} = \overline{U}_{g2} = 500$) V		S	65	mA/V
Steilheit bei $U_a = 3 \text{ kV}$, $U_{g2} = 120$	00 V. I	= 23 A	3	0,5	ma/ v
Schirmgitterdurchgriff	. , -a		D	16.5	%
bei U = 3 kV, I = 2,5	A		D _{g2}		•
bei U = 3 kV, I = 2,5 Ua = 800a1200 V					
•					
Betriebswerte	*******	amband Wa	do i to I ob	T - 0	
HF-Linearverstärker bei		enband-Mo	dulation	¹ g1 = <u></u>	
in Katodenbasisschaltun	K	Null	Ednton	1) Zweiton	1)
Aussteuerung	_			15	
Ausgangsleistung	Pout	0	30		kW
Anodenspannung	Ua.	8	8	8	kV
Schirmgitterspannung	Ug2	1200	1200	1200	Ψ
Gittervorspannung	-U _{g1}	175	175	175	V
Gitterspitzenspannung	Ugs	O	175	175	٧
Anodenstrom	Ia	2	5,9	3,8	A
Schirmgitterstrom	I _{g2}	0	250	100	mA
Anodenverlustleistung	Pa	16	17,2	14,6	kW
Schirmgitterverlust-	P _{g2}	0	300	120	W
leistung					
Wirkungsgrad	ų	0	63,5	50,5	%
Abstand für das nicht-					
lineare Ubersprechen durch Modulationspro-	•				
dukte				41	åB 2)
für 3. Ordnung	a ₃				dB 2)
für 5. Ordnung	a ₅			54	an .

Betriebswerte				
C-Betrieb bei Anoden- und Schirmgitter	rmodulation	in Ka	toden	•
basisschaltung			$\mathbf{J}_{\mathbf{A}}\mathbf{V}$	7))
Trägerleistung	$\mathtt{P}_{\mathtt{träg}}$		55	kW 3)
Anodenspannung	Ua.		10	kV
Schirmgitterspannung	ຫຼື		800	v
Gittervorspannung	-ປຶ <mark>ຊ1</mark>		150	٧
Gitterableitwiderstand bei fester Gittervorspannung	Rg1(f)		500	Ohm
Gitterspitzenspannung	Ugs	ca.	430	V
Anodenstrom	Ia		7,4	A
Schirmgitterstrom	I _{g2}	ca.	340	mA
Gitterstrom	I _{g1}	ca.	310	mA_ 、
Eingangsleistung	Pin	ca.	120	w ³⁾
Anodenverlustleistung	Pa		19	kW 4)
Schirmgitterverlustleistung	P _{g2}	ca.	270	W
Gitterverlustleistung	P _{g1}	ca.	30	W
Wirkungsgrad	ที		74,4	%
Außenwiderstand	$^{ m R}{f a}$	ca.	740	Ohm
Modulationsgrad	m		100	%
Modulationsleistung	Pmod		37	kW
Gitterstrom (bei $U_a = 0 \text{ V}$)	Ig1	max.	350	m.A
Eingangsleistung (bei $U_a = 0 \text{ V}$)	Pin	max.	140	w .
Grenzwerte				
HF-Linearverstärker bei Einseitenband	-Modulation	I	= 0	
in Katodenbasisschaltung		— გ . —		
Frequenz	f	max.	30	\mathtt{MHz}
Anodenspannung	υ _a	max.	12	k٧
Schirmgitterspannung	ຫຼື	max.	1400	v
Gittervorspannung	-Ug1	max.	350	v
Katodenspitzenstrom	I _{ks}	max.	70	A
Anodenverlustleistung	Pa	max.	25	kW

Schirmgitterverlustleistung

Gitterverlustleistung

600 W

300 W

max.

max.

Grenzwerte					
C-Betrieb bei Anoden- und Sch	irmgittermo	dulatio	n in K	atoder	<u>1-</u>
basisschaltung					
Frequenz	f	max.	30		MH:
Anodenspannung	$\mathtt{v}_\mathtt{a}$	max.	10		kV
Schirmgitterspannung	$\mathbf{u}_{\sigma 2}$	max.	900		A
Gittervorspannung	-ប [្] g1	max.	350		Δ
Katodenstrom	Ik	max.	15		A
Katodenspitzenstrom	I _{ka}	max.	70		A
Anodenverlustleistung	Pa	max.	25		kW
Schirmgitterverlustleistung	P _{g2}	max.	600		W
Gitterverlustleistung	Pg1	max.	300		W
Kapazitäten					
Katode/Gitter 1 .	Ck g1		110	± 20	\mathbf{pF}
Gitter 1/Gitter 2		₃ 2	150	± 20	pF
Katode/Gitter 2	C _{k g2}	2	10		pF _\
Gitter 1/Anode	Cg1 s		1,5		pF 5)
Katode/Anode	c _k a	-	0,2		pF 5)
Gitter 2/Anode	c _{g2}	a	40		рF
Kühlung				3	6)
Kühlluftstrom	${\it \Phi}_{\tt kl}$		≧ 25	m ² /	min 6)

Mit dem angegebenen Kühlluftstrom ist noch bei 45 $^{\circ}$ C Lufteintrittstemperatur, $P_a = 15$ kW und 760 Torr Luftdruck eine ausreichende Kühlung gewährleistet.

⁶⁾ bei $P_{a \text{ max}}$, einer Lufteintrittstemperatur θ_{kl} in = 25 °C und einem Luftdruck p_{kl} = 760 Torr.

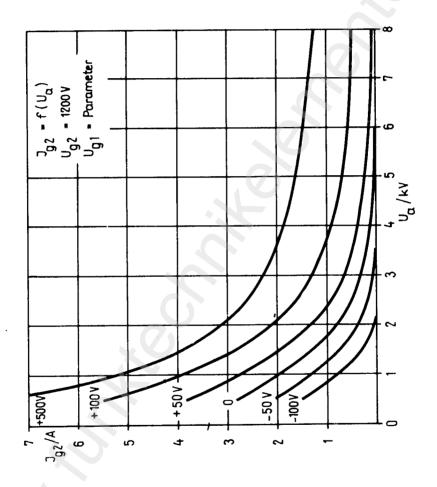
¹⁾ Träger unterdrückt.

²⁾ Gemessen nach der Zweiton-Methode bei f = 30 MHz.

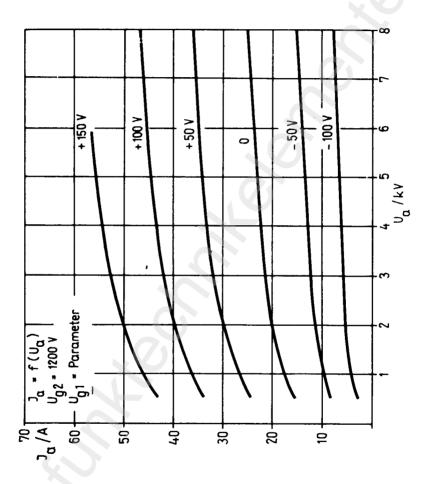
³⁾ Kreisverluste sind nicht berücksichtigt.

⁴⁾ Die angegebenen Grenzwerte dürfen auch bei Modulation nicht überschritten werden. Es ist zu beachten, daß bei 100 %iger Modulation die Anodenverlustleistung etwa auf das 1,5fache der für den Trägerwert angegebenen Verlustleistung ansteigt.

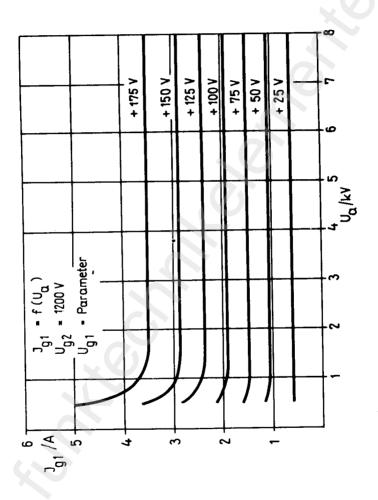
⁵⁾ Mit Schirmplatte 40 x 40 cm in der Schirmgitteranschlußebene gemessen.

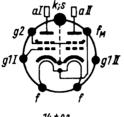

Spezielle Betriebsbedingungen

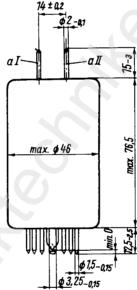
Die Abweichungen vom Nennwert der Heizspannung dürfen kurzzeitig nicht mehr als ± 5 % betragen. Dauernd zulässige Abweichung ± 1 %.


Die Temperatur an den Metall-Keramik-Verbindungen darf 250 $^{\rm O}{\rm C}$ nicht übersteigen.

Durch eine einschraubbare Schmelzsicherung können bei thermischer Überbelastung der Röhre Schutzmaßnahmen eingeleitet werden.







Die SRS 4451 ist eine strahlungsgekühlte Sendedoppeltetrode. Sie kann als NF- und HF-Verstärker, Oszillator, Frequenzvervielfacher und Modulator verwendet werden. Beide Systeme besitzen ein gemeinsames Schirmgitter.

Betriebslage: siehe spezielle Be-

triebsbedingungen

Masse: ca. 95 g Sockel: 7-25 Fassung: 7-25

Röhrenstandard: TGL 9482

SRS 4451

Heizung						
Indirekt geheizte Oxic	dkatode `					
Heizerschaltung			par		hintereir	
Heizspannung	υf			6,3	12,6	V
Heizstrom	If			1,8	0,9	A
Statische Werte (je S	ystem)					
Anodenspannung	U a			600		ν
Schirmgitterspannung	ປ _{ຊ2}			250		V
Gittervorspannung	-Ug1			24		Δ
Anodenstrom	Ia.			30		mA
Steilheit	ຣີ			4,5		mA/V
Schirmgitterver- stärkungsfaktor	/ ^u g2 g1			8,2		
Betriebswerte						
als HF-Verstärker, be	i Gegent	takt-C-B				
Frequenz	f	200	250	430	500	MHz
Anodenspannung	Ua.	600	600	520	500	V
Schirmgitterspannung	^υ g2	250	250	250	250	٧
Gittervorspannung	-0g1	80	80	80	-	V
Gitterableitwider- stand	R _{g1}	-	_	-	20	kOhm
Gitterspitzenspan- nung (zwischen den Steuergittern der beiden Systeme)	Ug1 Is g1	lls 200	•	-	-	V
Anodenstrom	Ia	2x100	2x 1 00	2x100	•	m.A
Schirmgitterstrom	I _{g2}	16	16	18		m.A
Gitterstrom	I _{g1}	2x2,5	2x2,5	2x2,8	2x3	m.A.
Schirmgitterver- lustleistung	P _{g2}	4	4	4,5	5	W
Anodenverlust- leistung	Pa	2x15	2x17,5	2x19		W
Ausgangsleistung	$^{\mathtt{P}}_{\mathtt{out}}$	90	85	66		W
Wirkungsgrad	η	75	71	64	60	%

Betriebswerte								
Als NF-Verstärker u	nd Mod	ulator	(B-Be	trieb)	ohne	Gitter	strom	
Anodenspannung	υa	6	00	4	50	3	00	V
Schirmgitterspannung	g Ug2	2	50	2	250	2	50	V
Gittervorspannung	-Ug1	27	,5	27	, 5		26	٧
Außenwiderstand (zwischen den beiden Anoden)	RaI	aII 12	, 5		10	6	,5	kOhn
Gitterspitzen- spannung	^J g1Is	g1IIs 0	55	0	55	0	52	٧
Anodenstrom	$\mathbf{I}_{\mathbf{a}}$	2x20	2x62	2x20	2x58	2x20	2 x 56	m.A
Schirmgitterstrom	Ig2	0,9	23	1,4	27	2,2	30	m.A
Schirmgitterver- lustleistung	P _{g2}	0,2	5.8	0,4	6,7	0,6	7. 5	w
Anodenverlust- leistung	P _a	2x12	2x12		2x8,5	•	2x5,6	
Ausgangsleistung	P _{out}		50		35	0	22,5	w
Klirrfaktor	out k	2	,4		3,1		22,5	%
Wirkungsgrad	7		,5		7 . 5		67	%
0 0			,	0	,,,		01	70
Betriebswerte								
Als HF-Verstärker u	nd Mod	ulator	(B-Be	trieb) mit G	itters	strom	
Anodenspannung	U _a		00		150		90	٧
Schirmgitterspannun		2	50		250	-	250	v
Gittervorspannung	-U _{g1}		25		25	_	25	v
Außenwiderstand (zwischen den beiden Anoden)	RaI		8		6		4	kOhm
Gitterspitzen- spannung	Ug11	a g 1 II	s 78	С	76	0	7 5	v
Anodenstrom	Ia	2x25	2x100	2x25	2x97	2x25	2x94	
Schirmgitterstrom	I _{g2}	1,2	26	1,9	28	2,8	30,5	
Gitterstrom	Ig1	0	2x2,6	0	2x2,6	o	2x2.6	
Gitterverlust- leistung	P _{n1}		2x0,1		2x0.1	0	2x0.1	

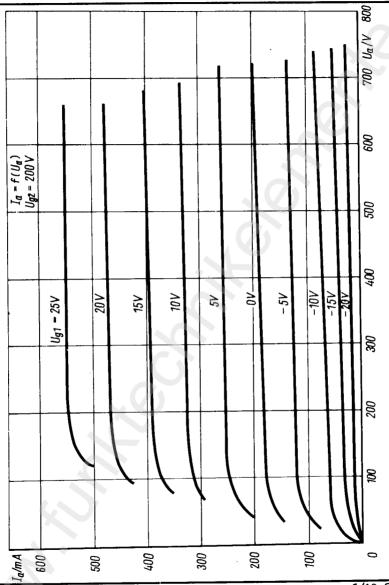
SRS 4451

Schirmgitter- verlustleistung	70	0.3	6,5	0,5	; 7	0.7	7.6	Tur
Anodenverlust-	P _{g2}	0,3	0,0	0,5	, ,	0,1	1,0	n
leistung	Pa	2x15	2x17	2x11,2	2x13,5	2 x7,5	2x9,7	W
Ausgangsleistung	Pout	0	86	Ċ	60	0	37	W
Klirrfaktor	k		5		5		5	%
Wirkungsgrad	η	71	,5		6 9	65	,5	%
Grenzwerte								
Frequenz			ſ		250		500	MHz
Anodenspannung			${}^{\mathbb{U}}_{\mathbf{a}}$	max.	600	max.	500	٧
Schirmgitterspannung			U _{g2}		max.	250		v
Gittervorspannung			-U ₀₁		max.	175		v
Anodenstrom			Ia		max.	2 x 1	10	m.A.
Katodenstrom			ľk		max.	2 x 1	20	m.A
Katodenspitzenstrom			Iks		max.	2 x 7	00	m A
Gitterstrom			I _{g1}		max.	2 x 5		m.A
Anodenverlustleistun	g		Pa		max.	2 x 2	0	W
Schirmgitterverlustl	.eistu	ng	Pg2		max.	7	•	W
Gitterverlustleistun	ıg		Pg1		max.	2 x 1		W
Gitterableitwidersta je System bei fester					max.	50		kOhm
Gittervorspannung			Rg1(f)	max.	90		KUIIII
bei automatischer Gittervorspannung			Rg1(Ŀ١	max.	100		kOhm
Spannung zwischen								
Heizer und Katode			^U f k		max.	100		V
Temperatur am Kolber	1		$ heta_{ t kol}$	Ъ	max.	180		°C
Wannad Alikan								
Kapazitäten Ringens			C				40.5	
Eingang			Cin			ca.	10,5	pF ~
Ausgang			Cout			ca. ≤	3,2	pF -
Gitter 1/Anode			c _{g1}	a		3	0,10	рF
In Gegentaktschaltur Gitter 1/I/Gitter 1/	g II			g1II		ca.	6,7	pF
Anode I/Anode II			Cal			ca.	2,1	рF

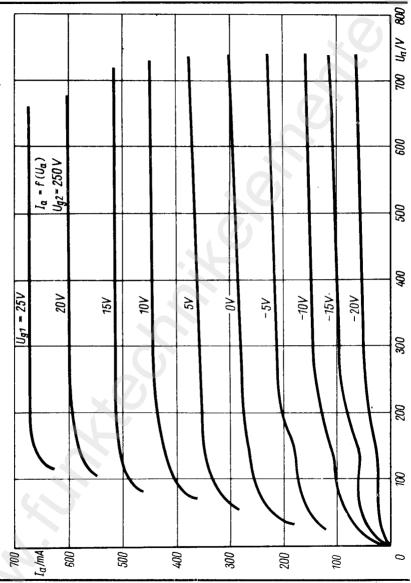
Spezielle Betriebsbedingungen

Die Röhre ist bei dem Nennwert der Heizspannung zu betreiben. Durch Schaltmittelstreuungen bedingte Abweichungen dürfen ± 2 % nicht übersteigen.

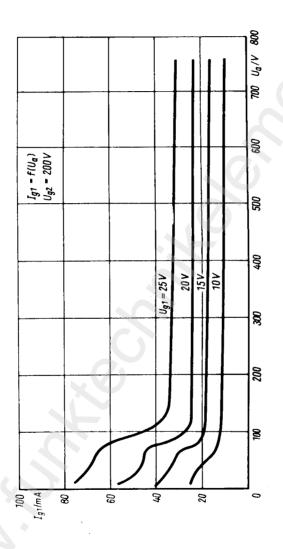
Abweichungen, die durch Netzspannungsschwankungen eintreten, dürfen kurzzeitig (<2 min) nicht mehr als ± 10 % vom Nennwert der Heizspannung betragen.

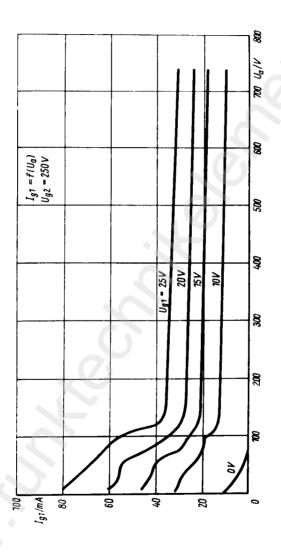

Bei Betrieb der Röhre mit Frequenzen über 150 MHz ist eine zusätzliche Kühlung des Kolbens und der Anodenanschlüsse durch einen schwachen Luftstrom erforderlich.

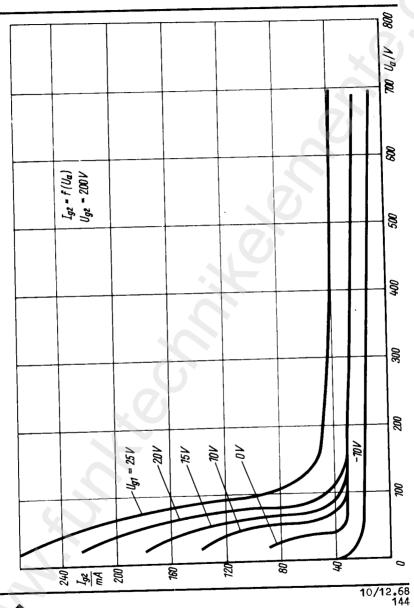
Die Röhre ist für senkrechten und waagerechten Einbau vorgesehen. Bei waagerechtem Einbau müssen die Anodenanschlüsse in einer waagerechten Ebene liegen.

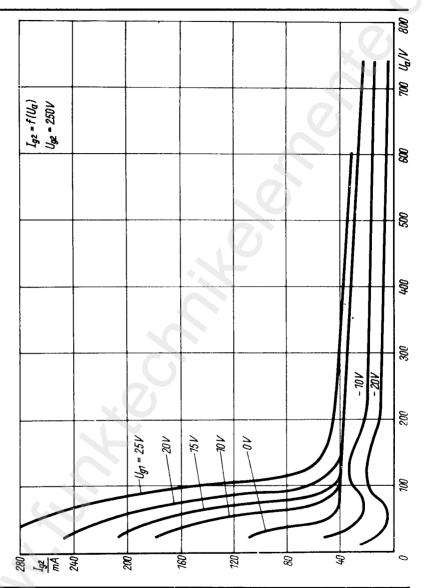

Für Impulsbetrieb ist die Rölre nicht geeignet. In Sonderfällen ist beim Hersteller rückzufragen.

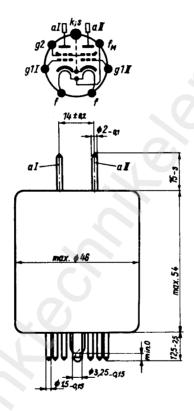
Für den Impulsbetrieb wird auf die Röhre SRS 4453 hingewiesen.











Die SRS 4452 ist eine strahlungsgekühlte Sendedoppeltetrode. Sie kann u. a. als HF-Verstärker, Oszillator, Frequenzvervielfacher und NF-Verstärker verwendet werden. Beide Systeme besitzen ein gemeinsames Schirmgitter.

Betriebslage: siehe spezielle Betriebsbedingungen

Masse: ca. 65 g Sockel: 7-25 Fassung: 7-25

Röhrenstandard: TGL 9481

Heizung							
Indirekt geheizte Oxi	dkatode						
Heizerschaltung			ps	ralle	l hi	interei	nander
Heizspannung	U _f			6,3		12,6	Ψ
Heizstrom	I _f			1,3		0,65	A
Statische Werte (je S							
Anodenspannung	Π a					250	٧
Schirmgitterspannung	ປ _{g2}					250	V
Gittervorspannung	-v _{g1}					22	v
Anodenstrom	Ia'					20	mA
Steilheit	ຣື					2,5	mA∕V
Schirmgitterver- stärkungsfaktor	/ ^u g2 g1					8	
Betriebswerte als HF-Verstärker, be	ei Gegen	takt-C	-Betrie	<u>eb</u>			
Frequenz	f	200	200	4 00	400	600	\mathtt{MHz}
Anodenspannung	U _a	600	300	400	200	400	Ψ
Schirmgitterspannung	υ _{g2}	250	250	250	200	250	v
Gittervorspannung	-Ug1	60	40	50	30	50	ν
Anodenstrom	Ia	2 x 50	2x50	2x50	2x50	2x50	m.A
Schirmgitterstrom	I _{g2}	8	9	5	6	5	m.A.
Gitterstrom	I _{g1}	2x0,7	2x0,7	2x0,7	2x0,5	2x0,7	m.A
Anodenverlust- leistung	Pa	2 x 6	2x4,5	2x8	2x4,5	2 x1 0	W
Schirmgitterver- lustleistung	Pg2	2	2,2	1,2	1,2	1,3	W
Ausgangsleistung	Pout	48	21	24	11	20	W
Wirkungsgrad	70	80	70	60	55	50	4

<u>Betriebswerte</u>									
bei Anoden- und Schirmgitterspannungsmodulation (C-Betrieb)									
Frequenz	f	200	200	400	MHz				
Anodenspannung	u a	500	300	300	V				
Schirmgitterspannung	Ug2	250	25 0	250	V				
Gittervorspannung	-0g1	80	50	50	Δ				
Anodenstrom	I _a	2x40	2 x 40	2x40	mA				
Schirmgitterstrom	I _{g2}	8	8	6	mA				
Gitterstrom	Ig1	2x1	2x1	2x1	mA				
Anodenverlust- leistung	P _a	2 x 4,5	2x3,5	2x5,5	W				
Schirmgitterver- lustleistung	Pg2	2	2	1,5	W				
Ausgangsleistung	Pout	31	17	13	W				
Wirkungsgrad	η	77,5	71	54	%				
Betriebswerte als Frequenzverdreifs	cher (C-Betrieb)						
Frequenz	f		66,7/200	133/400	MHz				
Anodenspannung	U _a		30 0	300	v				
Schirmgitterspannung	Ug2		250	25 0	٧				
Gittervorspannung	-Ug1		175	175	V				
Anodenstrom	Ia		2x45	2x45	mA				
Schirmgitterstrom	I _{g2}		6	5,6	mA				
Gitterstrom	I _{g1}		2x1,5	2 x 1,2	mA				
Anodenverlust- leistung	P _a		2x8,5	2 x 9,5	W				
Schirmgitterver- lustleistung	P _{g2}		1,5	1,4	W				
Ausgangsleistung	Pout		10	8	W				
Wirkungsgrad	7		37	29,5	%				

Betriebswerte								
als NF-Verstärker (B-		_		_		\mathbf{Y}		
Anodenspannung	U _a	-	500	_	300	v		
Schirmgitterspannung	U _{P2}	2	250	2	250	V		
Gittervorspannung	-0g1		26		25	٧		
Widerstand zwischen den beiden Anoden	RaI aII		20		11	kOhm		
Gitterspitzen- spannung	Ug1Is g1I	Is O	52	0	50	V		
Anodenstrom	Ia	2x12,5	2x36,5	2x12,5	2x35	mA.		
Schirmgitterstrom	I _{g2}	0,7	16,2	1,2	19	mA		
Anodenverlust- leistung	P _a	2x6,25	2x6,5	2x3,75	2x3,9	W		
Schirmgitterver- lustleistung	P _{g2}	0,18	4,05	0,3	4,75	W		
Ausgangsleistung	Pout	0	23,5	0	13,2	W		
Klirrfaktor	k	-	3,5	-	3,5	%		
Wirkungsgrad	η	-	63,5	-	63	%		
				•				
Grenzwerte								
Frequenz		f		max.	600	MHz		
Anodenspannung		υ,	a	max.	600	Δ		
bei Anoden- und Schin spannungsmodulation	mgitter-	m	a mod	max.	500	٧		
Schirmgitterspannung		11	g2	max.	250	ν		
Gittervorspannung		-υ [*]	o~ ~1	max.	200	٧		
bei HF-Verstärkung			g1	max.	75	٧		
bei Anoden- und Schin spannungsmodulation	rmgitter-	ŤT	g1 mod	max.	100	V		
bei NF-Verstärker		_TT		max.	75	V		
Katodenstrom		I,	g1 -	max.	2x55	m.A		
Katodenspitzenstrom		ı.	ks	· · · · · ·	2x330	mA.		
Gitterstrom		I	KB		2x2.5	mA		
Anodenverlustleistung	2	70	g1	max.	2x10	W		
Schirmgitterverlustle	•	10	B. 	max.	3	w		
Gitterverlustleistung	7	TD.	g2		2x0.5	w		
	•	-,	g1		_1.0,)	**		

Gitterableitwiderstand bei fester Gittervorspannung, je System bei automatischer Gittervor-	Rg1(f)	max.	50	kOhm
spanning, je System	^R g1(k)	max.	100	kOhm
Spannung zwischen Heizer und Katode				
und Latode	^U f k	max.	100	V
Temperatur am Kolben	9 _{kolb}	max.	180	°c
an den Stiften	dstif	max.	180	°C
Kapazitäten (je System)				
Eingang	$^{\mathtt{c}}_{\mathtt{in}}$		5,5	рF
Ausgang	Cout		2,0	pF
Gitter 1/Anode	Cg1 a	≦	0,07	рF
in Gegentaktschaltung	8. 4			
Gitter 1/I /Gitter 1/II	Cg1I g1I	т	4,0	рF
Anode I/Anode II	Cal all		1,3	pF

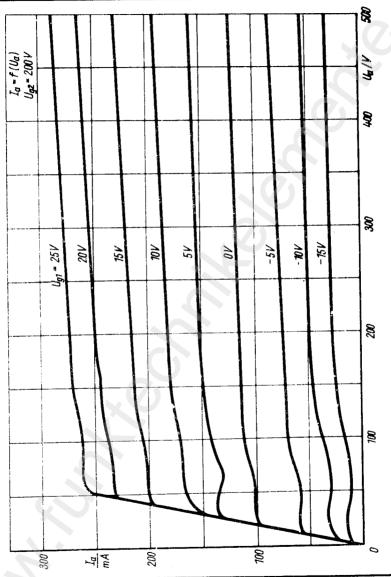
Spezielle Betriebsbedingungen

Die Röhre ist bei dem Nennwert der Heizspannung zu betreiben. Durch Schaltmittelstreuungen bedingte Abweichungen dürfen ± 2 % nicht übersteigen.

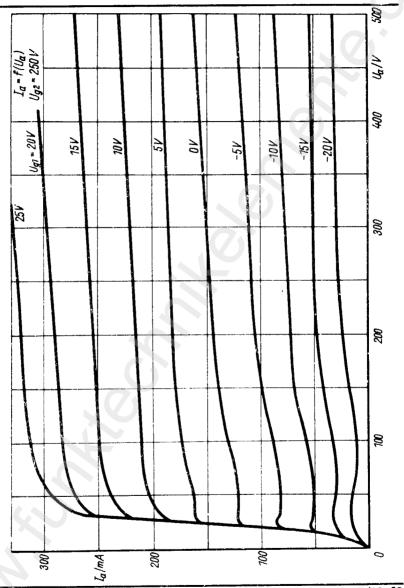
Abweichungen, die durch Netzspannungsschwankungen eintreten, dürfen kurzzeitig (<2 min) nicht mehr als ± 10 % vom Nennwert der Heizspannung betragen.

Bei Betrieb der Röhre mit hohen Umgebungstemperaturen oder bei

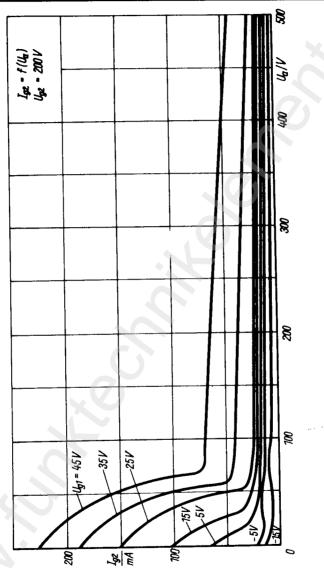
Betriebsfrequenzen $f \ge 150 \text{ MHz}$ bei $U_a 600 \text{ V}$ $f \ge 200 \text{ MHz}$ bei $U_a 500 \text{ V}$

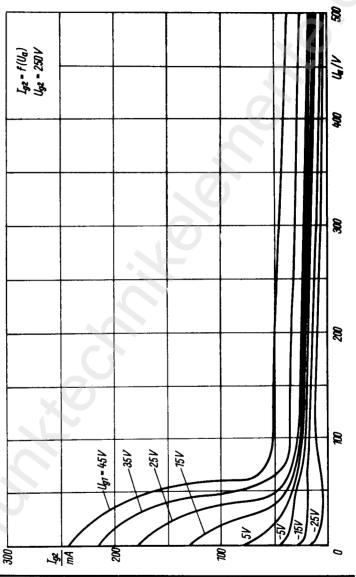

 $f \stackrel{\geq}{=} 430 \text{ MHz bei } U_{\text{g}} 300 \text{ V}$

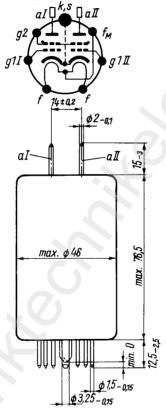
ist eine zusätzliche Kühlung des Kolbens und der Anodenanschlüsse durch einen schwachen Luftstrom erforderlich, damit die Temperaturgrenzwerte nicht überschritten werden.


Die Röhre ist für senkrechten und waagerechten Einbau vorgesehen. Bei waagerechtem Einbau müssen die Anodenanschlüsse in einer waagerechten Ebene liegen.

Soll die Röhre für Impulsbetrieb verwendet werden, so ist beim Hersteller rückzufragen.







9/12.68 155

Die SRS 4453 ist eine strahlungsgekühlte Senderöhre für Impulsbetrieb. Sie ist speziell für Impulsmodulationsstufen vorgesehen und kann als Taströhre für Magnetrons bis 40 kW Steuerleistung eingesetzt werden. Ein besonderer Vorteil der SRS 4453 ist ihre hohe Spannungsfestigkeit bei hohen Impulsströmen.

Betriebslage: siehe spezielle Betriebsbedingungen

Masse: ca. 95 g Sockel: 7-25 Fassung: 7-25

Röhrenstandard: TGL 200-8385

SRS 4453

Heizung

Indirekt	geheizte	Oxidkatode
	_	

Heizerschaltung		parallel	hintereinander
Heizspannung	Ŭ g	6,3	12,6 V
Heizstrom	ı _f	2,2	1,1 ▲

Statische Werte (je System)

Steilheit (bei I _a = 30 mA)	S	4,5 mA/V
Schirmgitterverstärkungsfaktor (bei 🛵 = 30 mA)	/ ^u g2 g1	8,2

Betriebswerte

als Impulsmodulator

(beide Systeme parallel geschaltet)

Anodenspannung	Ua	7,0	kV
Schirmgitterspannung	$\sigma_{\mathbf{g}2}$	850	V
Gittervorspannung	-ប [្] ្នា	200	٧
Anodenimpulsstrom	Iap	5 , 5	A
Anodenwiderstand	Ra	1	kOhm
Impulsdauer	$\mathbf{t}_{\mathrm{p}}^{\mathtt{u}}$	0,5	/us
Impulsfolgefrequenz	f_	1000	Hz
Tastverhältnis	τ	0,5.10-3	

Betriebswerte, die von den angegebenen Werten abweichen, sind mit dem Eersteller abzusprechen.

Kapazitäten (je System)

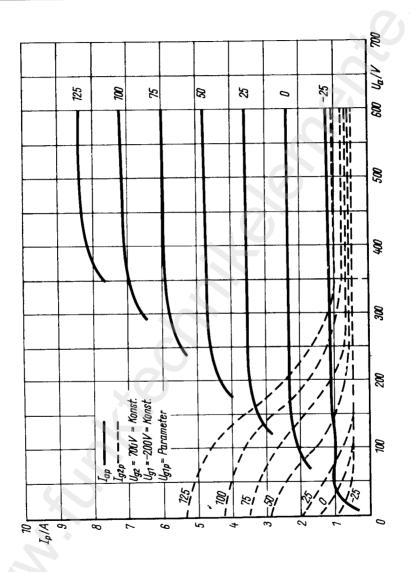
Eingang	$^{\mathtt{C}}\mathtt{in}$	8,511 pF
Ausgang	Cout	2,64 pF
Gitter 1/Anode	C _{g1 a}	0,10 pF

Grenzwerte

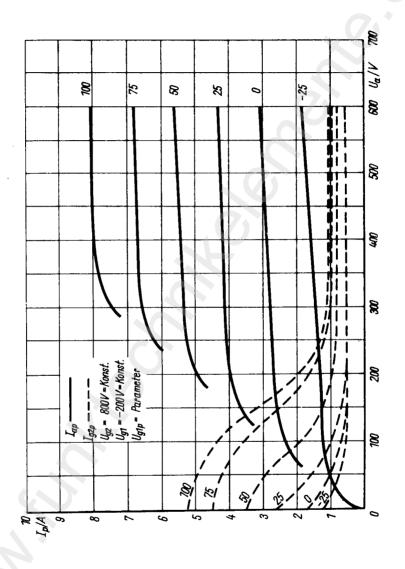
(beide Systeme parallel geschaltet)

Anodenspannung	${}^{\mathrm{U}}\mathbf{a}$	max.	8	kV	
Schirmgitterspannung	Ug2	max.	950	v	
Gittervorspannung	-0g1	max.	300	V	
Anodenverlustleistung	Pa'	max.	15	W	
Schirmgitterverlustleistung	P _{g2}	max.	3	W	
Gitterverlustleistung	Pg1	max.	1	W	
Anodenimpulsstrom	Iap	max.	6,5	A	
Schirmgitterimpulsstrom	I _{g2p}	max.	3,5	A	
Gitterimpulsstrom	Ig1p	max.	2	A	
Negativer Gitterstrom	-I _{g1}	max.	15	/uA	
Impulsdauer	tp	max.	1	/us	
Impulsfolgefrequenz	£p	max.	1600	Hz	
Tastverhältnis	τ	max.1,	6•10 ⁻³		
Spannung zwischen Heizer und Katode	U-f k	max.	100	Δ	
Temperatur des Kolbens	g_{kolb}	max.	200	oc	1)
der Anodenanschlüsse	A VOID	max.	200	°c	
	a.			-	

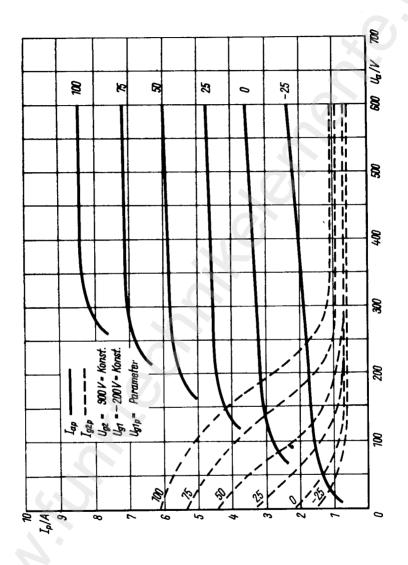
Spezielle Betriebsbedingungen

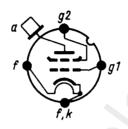

Der Nennwert der Heizspannung darf durch Schaltmittelstreuungen nicht mehr als ± 2 % schwanken. Abweichungen, die durch Netzspannungsschwankungen eintreten, dürfen kurzzeitig nicht mehr als ± 10 % vom Nennwert der Heizspannung betragen.

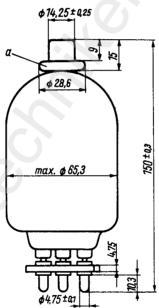
Die Röhre ist für senkrechten und waagerechten Einbau vorgesehen. Bei waagerechtem Einbau müssen die Anodenanschlüsse in einer waagerechten Ebene liegen.


Die Röhre ist für den Dauerstrichbetrieb nicht geeignet. Für diese Zwecke ist die SRS 4451 einzusetzen.

¹⁾ Bei Überschreiten der Temperatur ist der Kolben durch einen entsprechenden Luftstrom zu kühlen.







Die SRS 454 ist eine strahlungsgekühlte Impulstetrode für hohe Anodenbetriebsspannungen. Sie gibt eine maximale Leistung von ca. 200 kW bei Verwendung in geeigneter Tastschaltung ab. Die Röhre SRS 454 wird ersetzt durch die SRS 464.

Masse: ca. 200 g Fassung: B 648

SRS 454

Heizung

Indirekt geheizte Oxidkatode

Ein Ende des Heizers ist im Inneren der Röhre direkt mit der Katode verbunden.

Heizspannung	υ _P	27	_V 1)
Heizstrom	r _f	ca.2,15	A
Anheizzeit (ohne künstliche Kühlung)	t_	≧ 5	min

Statische Werte

Schirmgitterverstärkungsfaktor /
$$u_{g2}$$
 g1 5,56 bei U_a = 400 V, U_{g2} = 100...200 V, I_a = 100 mA Steilheit bei U_a = 400 V, U_{g2} = 200 V, U_{g2} = 100 mA

<u>Betriebswerte</u>

Anodenspannung	$\mathtt{U}_{\mathbf{a}}$	14	kV
Schirmgitterspannung	υ _{g2}	1,2	kV
Gittervorspannung	-Ug1	7 00	٧
Anodenimpulsstrom	Iap	12	A
Schirmgitterstrom	I _{g2}	1,5	A
Außenwiderstand	R _a	1	kOhm
Impulsdauer	t _p	1	/us
Tastverhältnis	τ	0,001	•

Grenzwerte

Impulsdauer	$\mathbf{t_p}$		2,5	/UB	
Anodenkaltspannung	$\overline{v}_{\mathbf{a}0}^{\mathbf{r}}$	max.	18	k₹	
Anodenspannung	$\overline{v_a}$	max.	17,5	k₹	
Schirmgitterkaltspannung	υ _{g20}	max.	1,5	k₹	
Schirmgitterspannung	v_{g2}^{2}	max.	1,3	k٧	
Gittersperrspannung	-ປຶg1 spe	max.	1	k₹	
positive Gitterimpulsspannung	υ _{g1p}	max.	.300	V	
Katodenimpulsstrom	I _{kp}	max.	20	A	
Katodenstrom (Effektivwert)	I _{k eff}	max.	0,5	A	
Anodenverlustleistung	Pa	max.	60	W	
Schirmgitterverlustleistung	P _{g2}	max.	8	A	
Gitterverlustleistung	Pg1	max.	3	W	
Tastverhältnis	τ	₹	0,001		
Temperatur am Glaskolben	₽ kolb	max.	200	°C	2)
Kapazitäten					
Eingang	c _{in}		45	p₹	
Ausgang	Cout		13	рF	
Gitter 1/Anode	C _{g1 a}		2,5	рF	

²⁾ Bei schlechter Luftzirkulation muß bereits bei $P_{\bf g}$ = 10 W künstlich gekühlt werden.

¹⁾ Dauernd zulässige Abweichung der Heizspannung vom Sollwert: † 2 %. Kurzzeitige zulässige Abweichung der Heizspannung vom Sollwert: † 10 % während 2 min innerhalb 1 h.

Spezielle Betriebsbedingungen

Negative Gittervorspannung und Schirmgitterspannung dürfen gleichzeitig mit der Heizspannung, Impuls- und Anodenspannung jedoch erst nach der Anheizzeit $t_{\rm A} \stackrel{>}{\scriptstyle \sim} 5$ min angelegt werden.

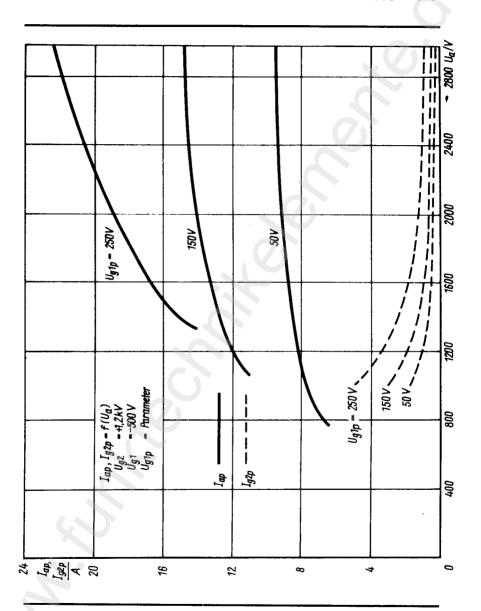
Bei der Bemessung des Ladekondensators ist darauf zu achten, daß der Maximalwert

 $C \leq \frac{10 \ I_{\text{kmax}} \cdot t_{\text{p}}}{U_{\text{g}}}$

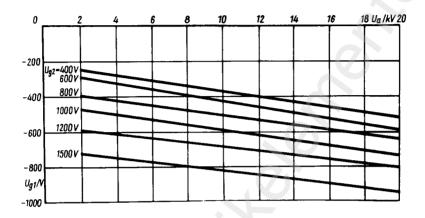
nicht überschritten wird und die Hochspannungsquelle über einen Widerstand von min. 20 kOhm angeschlossen wird.

Bei Benutzung eines Transformators im Ausgang ist darauf zu achten, daß die Gesamtspannung an der Röhre SRS 454 beim Durchschwingen am Ende des Impulses den Wert von 18 kV unter keinen Umständen überschreitet.

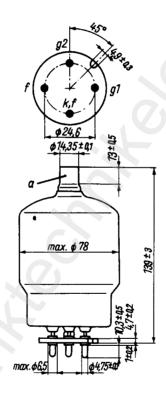
Ein Anodenschutzwiderstand von 20 0hm ist zweckmäßigerweise einzuschalten, um bei gleichzeitigen Kurzschlüssen von Magnetfeldröhre und SRS 454 den Entladestrom des Speicherkondensators zu begrenzen.


Der im Betrieb auftretende Spannungsverlust von 300 V bei 15 A ist wohl in den meisten Fällen tragbar. Es erübrigt sich dann ein weiterer Schutzwiderstand vor dem außen anzuschließenden Sender.

Eine Sicherheitsfunkenstrecke nahe der Röhre zwischen Gitter 2 und Katode zur Ableitung eventueller Überspannungen vom Schirmgitter ist zu verwenden.


Im Schirmgitterkreis ist ein Schutzwiderstand von mindestens 100 Ohm direkt am Sockelanschluß vorzusehen. Zur Begrenzung des dauernd fließenden Kurzschlußstromes im Schirmgitter ist die Spannungsquelle über einen Widerstand von $R_{g2} \stackrel{>}{=} 20$ kOhm und einen Blockkondensator $C_{g2} \stackrel{\leq}{=} 0.5$ µF anzuschließen.

Die teilweise negativen Steuergitterströme können zu Impulsverzerrungen im Ausgang führen. Eine Vorbelastung von ca. 600 Ohm in der Steuerstufe schließt solche aus.



Richtwerte für die negative Steuergittervorspannung in Abhängigkeit von \mathbf{U}_{a} und \mathbf{U}_{g2}

Die SRS 464 ist eine strahlungsgekühlte Sendetetrode für Impulsbetrieb. Sie ist speziell für Impulsmodulationsstufen vorgesehen. Die maximale Impulsausgangsleistung der SRS 464 beträgt 300 kW. Auf Grund ihrer einfachen und robusten Konstruktion eignet sich die SRS 464 besonders für Schiffsradaranlagen, bei denen mit größeren Erschütterungen zu rechnen ist.

Betriebslage: vorzugsweise senkrecht Masse: ca. 245 g Röhrenstandard: TGL 200-8489

SRS 464

Heizung				
halbindirekt geheizte Oxidkatode				
Heizspannung	${\tt v_f}$		26	V
Heizstrom	^I f		2,2	A
Anheizzeit	t _A	<u>≥</u> ·	3,0	min
<u>Kennwerte</u>				
Anodenspannung	U _a		400	7
Schirmgitterspannung	v_{g2}		200	٧
Gittervorspannung	-Ug1		28	V
Anodenstrom	Ia		100	mA
Steilheit	S		11	mA/V
Schirmgitterdurchgriff	D _{g2}		18	%
Kapazitäten				
Eingang	Cin		45	рF
Ausgang	Cout		7	рF
Gitter 1/Anode	Cg1 a		0,5	\mathbf{pF}
Grenzwerte				
(als Impulsmodulator)				
Anodenspitzenspannung (Überschwingen)	Uas	max.	25	k₹
Anodenspannung	U _a	max.	20	kV
Schirmgitterspannung	ຫຼື ₂	max.	1,5	kV
Gittervorspannung	-ປຶ _g 1	max.	1,0	kV
positive Gitterimpulsspannung	ປ ^ອ 1p	max.	300	٧
Anodenimpulsstrom	Iap	max.	18	A
Anodenverlustleistung	Pa	max.	60	W
Schirmgitterverlustleistung	P_{g2}	max.	8	W
Gitterverlustleistung	Pg1	max.	3	W
Impulsdauer	tp'	max.	2,5	/us
Tastverhältnis	τ	max.	10-3	-

Spezielle Betriebsbedingungen

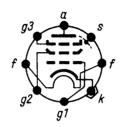
a) für alle Betriebsarten

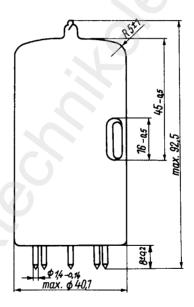
Der Nennwert der Heizspannung darf durch Schaltmittelstreuungen nicht mehr als ± 2 % schwanken. Abweichungen, die durch Netzspannungsschwankungen eintreten, dürfen kurzzeitig nicht mehr als ± 10 % vom Nennwert der Heizspannung betragen.

Die Röhre sollte möglichst senkrecht eingebaut werden. Bei anderer Einbaulage ist allseitig für ausreichende Wärmeabfuhr zu sorgen.

Die maximale Temperatur des Kolbens und des Anodenanschlusses darf 200 °C nicht überschreiten. Bei ungünstigen Einbaubedingungen ist durch einen entsprechenden Luftstrom in Richtung der Röhrenachse der (ben angeführte Grenzwert von 200 °C zu gewährleisten. Der Gesentwiderstand im Steuergitterkreis darf 100 kohm nicht überschreiten.

b) für Impulsmodulatorbetrieb


Bei Kurzschlüssen bzw. inneren Überschlägen ist der dauernd fließende Kurzschlußstrom im Anodenkreis auf $I_a=500\,$ mA zu begrenzen.


Im Schirmgitterkreis ist ein Schutzwiderstand von mindestens 100 Ohm direkt am Sockelanschluß vorzusehen. Gleichfalls ist zur Begrenzung des dauernd fließenden Kurzschlußstromes im Schirmgitter die Spannungsquelle über einen Vorwiderstand $R_{g2} \ge 20$ kOhm und einen Blockkondensator $C_{g2} \le 0,05$ uF anzuschließen.

Die SRS 552 N ist eine strahlungsgekühlte Sendepentode. Sie ist für NF-. HF- und Impulsbetrieb geeignet.

Masse: ca. 50 g Sockel: 8-25 TGL 200-8345 Bl.1

Fassung: 8-25 Röhrenstandard: TGL 9483

SRS 552N

Heizung Indirekt geheizte Oxidkatode Heizspannung	ប្ទូ	12.6	V
Heizstrom	I _f	0.7	A
Statische Werte	_	7)	
Anodenspannung	Ua	800	▼
Schirmgitterspannung	v_{g2}	250	V
Gittervorspannung	- ^U g1	40	٧
Anodenstrom	$I_{\mathbf{a}}$	50	mA.
Schirmgitterstrom	I_{g2}	4	mA
Steilheit	S	3,5	mA/V
Schirmgitterverstärkungsfaktor	/ ^u g2 g1	5,3	
Betriebswerte			
Hochfrequenzverstärkung bei Vorstufe (Betriebsdaten für annähernd gerade	Schwinglinie)	25 MH2	•
Anodenspannung	υ _a	1000	V
Schirmgitterspannung	^U g2	300	V
Gittervorspannung	- ^U g1	60	v
Anodenstrom im Schwingbetrieb	I ad	100	mA
Anodenruhestrom	I _{a0}	30	mA
Schirmgitterstrom im Schwingbetrieb	I _{g2d}	9	mA
Außenwiderstand	Ra	6000	Ohm
HF-Gitterspitzenspannung	Ug1s HF	< 55	
Ausgangsleistung	Pout	6 0	W

Betriebswerte

bei Hochfrequenzverstärkung (annähernd B-Betrieb)

bei	f	4 65	< 45	< 25	MHz
Anodenspannung	${f U_a}$	800	1000	1000	V
Schirmgitterspannung	Ug2	250	300	300	v
Gittervorspannung	-0g1	80	80	80	٧
Anodenstrom im Schwingbetrieb	I _{ad}	130	120	120	mA.
Schirmgitterstrom im Schwingbetrieb	I _{g2d}	10	10	10	m.A.
Gitterstrom im Schwingbetrieb	Ig1d	6	5	2	mA
Außenwiderstand	Ra	3,3	5,0	4,75	kOhm
HF-Gitterspitzenspannung	Ug1s HF	110	100	100	v
Ausgangsleistung	Pout	60	70	80	W
Eingangsleistung	Pin	3	1,5	0,5	W

Betriebswerte

bei Gitterspannungsmodulation f = 25 MHz

3	<u> Frägerwerte</u>	Oberstrichw	erte
U _e	1000	1000	٧
π	300	300	٧
TT	105	80	v
_	60	120	m.A.
	3	10	m.A
_	-	3	m.A
R _a	4,75	4,75	kOhm
77	n 100	100	V
77	4 AE	_	٧
TD CT	20	80	W
P _{in}	40,5	0,5	W
	Ua Ug2 g1 Iad Ig2d Ig1d Ra Ug1s Hi Jin s H	Ua 1000 Ug2 300 Ug1 105 Iad 60 Ig2d 3 Ig1d - Ra 4,75 Ug1s HF 100 Uin s NF ≦ 25 Pout 20	Ug2 300 300 300 300 300 300 300 300 300 30

SRS 552N

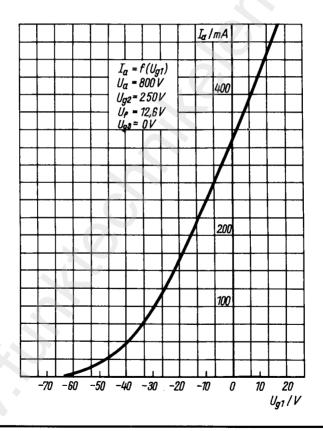
<u>Betriebswerte</u>					
bei Schwingbetrieb in Eigene	rregung	f = 45	Mz.		
Anodenspannung	$v_{\mathbf{a}}$			1000	V
Schirmgitterspannung	Ug2		250.	300	Ψ
Gittervorspannung (fester Anteil)	-Ug1		₹	40	٧
Gitterableitwiderstand	Rg1			. 5	kOhm
Ausgangsleistung	Pout		ca.	65	W
Grenzwerte					
Anodenspitzenspannung	U _{as}		max.	3000	Δ
Anodenspannung	U _A		max.	1 000	V
Anodenverlustleistung	Pa		max.	40	W
Schirmgitterkaltspannung	υ _{g20}		ma.x.	800	V
Schirmgitterspannung	υ _{g2}		max.	300	٧
Schirmgitterverlustleistung	P _{g2}		max.	5	W
Gittervorspannung	-Ug1		max.	300	V
Gitterverlustleistung	Pg1		max.	1	W
Gitterableitwiderstand	R _{g1}		max.	20	kOhm
Bremsgitterwiderstand	R _{g3}		max.	20	kOhm
Katodenstrom	Ik		max.	230	mA
Spannung zwischen Heizer und Katode	U _{f k}		max.	100	ν
Äußerer Widerstand zwischen Heizer und Katode	R _{f k}		max.	2,5	kOhm
Temperatur des Kolbens	kolb		max.	20 0	°C
Grenzwerte					
bei	f	ϵ	55	45	MHz
Anodenspannung im Schwingbetrieb	$\mathtt{v}_{\mathtt{ad}}$	max. 80	o max.	1000	v
Schirmgitterspannung im Schwingbetrieb	U _{g2đ}	max. 25	o max.	3 00	v

Anodenstrom im

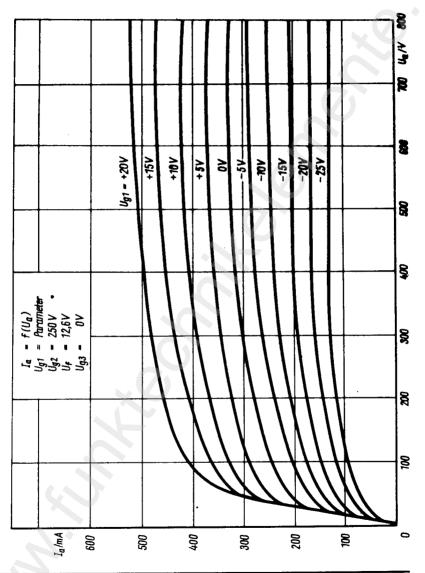
Schwingbetrieb

120 mA

max.

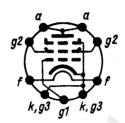

Iad

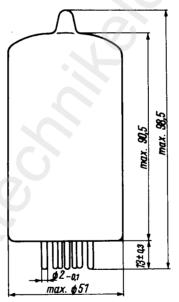
max. 130


Kapazitäten

Eingang	Cin	₹	14	pF
Ausgang	Cout	≦	10	рF
Gitter 1/Anode	C _{g1} a	重	0,12	рF

<u>Einbaulage</u>: Die Betriebslage ist beliebig. Bei horizontaler Betriebslage ist die Röhre so einzubauen, daß die große Achse der Gitter senkrecht steht.



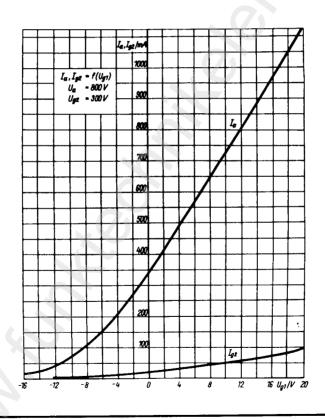


6/12.68 178

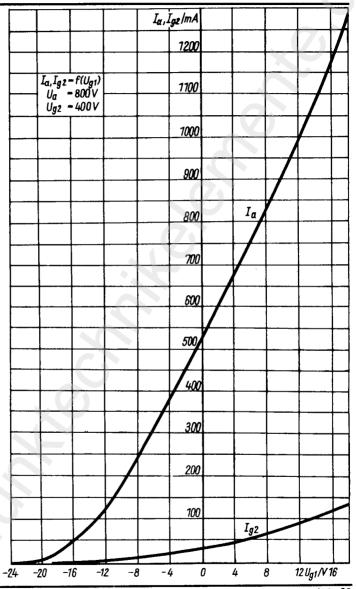
Die SRS 551 ist eine strahlungsgekühlte Sendepentode. Sie kann u. a. für Vor- und Endstufen in Senderverstärkern, insbesondere in UKW-Sendern und in Modulatorstufen, sowie in elektromedizinischen Geräten verwendet werden.

Betriebslage: beliebig Masse: ca. 100 g Sockel: 9-24, TGL 200-8347 Bl.1 Fassung: 9-24, TGL 68-36 Bl.1 u. Bl.2 Röhrenstandard: TGL 9484

Heizung					
Indirekt geheizte Oxidkatode					
Heizspannung	Ŭ f			6,3	V
Heizstrom	I _f			2,1	A
	-				
Statische Werte					
Anodenspannung	u _a			400	Ψ
Schirmgitterspannung	ປ _ີ -ປ			400	V
Gittervorspannung	-Ug1			12	٧
Anodenstrom	Ia.			100	mA.
Schirmgitterstrom	I			10	mA.
Steilheit	s ¹ g2			18	mA/V
Schirmgitterverstärkungsfakto	r /ug2 g1			20	
	, 8- 8.				
Betriebswerte					
bei Hochfrequenzverstärkung,	C-Betrieb				
Frequenz	f	100	100	100	\mathtt{MHz}
Anodenspannung	Ua	300	600	800	ν
Schirmgitterspannung	Ug2	3 00	350	380	Ψ
Gittervorspannung	-Ug1	25	30	35	v
Gitterspitzenspannung	_ປ ືg 1 ຣ	40	45	50	V
Anodenstrom	I _a '	163	193	200	m.A.
Schirmgitterstrom	I_{g2}^{α}	30	26	25	m A
Gitterstrom	Ig1	14	14	14	mA.
Eingangsleistung	Pin	0,55	0,65	0,70	W
Anodenverlustleistung	Pa	23	46	55	W
Schirmgitterverlustleistung	Pg2	9,0	9,1	9,5	W
Ausgangsleistung	Pout	26	70	105	W
Wirkungsgrad	η	53	60	66	%

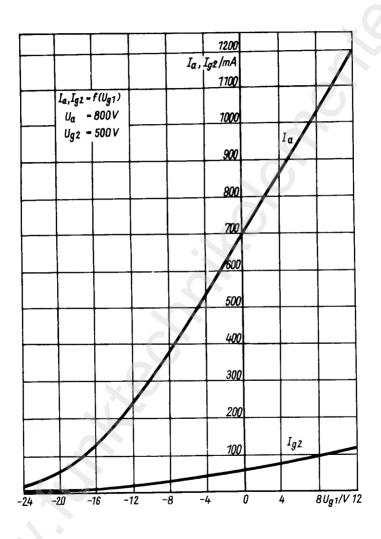


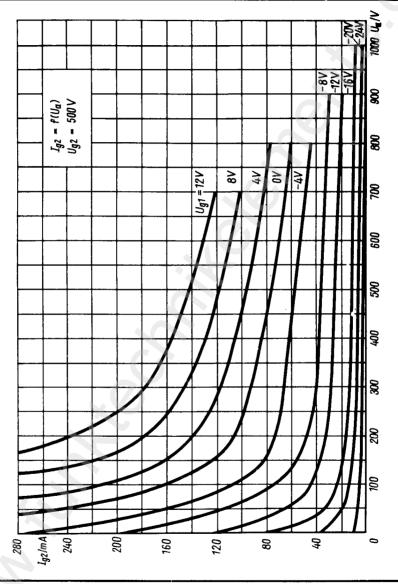
Betriebswerte					
bei Hochfrequenzverstärkung, C	-Betrieb				
Frequenz	f	4 30	< 30	4 30	MHz
Anodenspannung	${}^{\mathrm{U}}\mathbf{a}$	600	800	1000	▼
Schirmgitterspannung	ng5	300	335	340	7
Gittervorspannung	-Ug1	30	35	45	٧
Gitterspitzenspannung	ປ [ື] g1s	46	50	62	٧
Anodenstrom	Ia.	208	207	215	m.A.
Schirmgitterstrom	I _{g2}	33	29	29	mA
Gitterstrom	Ig1	16	15	14	m.A
Eingangsleistung	Pin	0.74	0.75	0.87	W
Anodenverlustleistung	Pa	42	53	60	W
Schirmgitterverlustleistung	Pg2	10	9,7	10	W
Ausgangsleistung	Pout	83	113	155	W
Wirkungsgrad	η	66	68	72	%
				•	•
Grenzwerte					
Frequenz	f		max.	150	MHz
Anodenkaltspannung	υ _a ο		max.	1200	V
Anodenspannung für f \(\frac{1}{2} \) MHz	Ua.		max.	1000	V
Anodenspannungsmodulation	Ua mod		max.	800	V
Anodenspannung für f ≦100 MHz	ua.		max.	800	V
Schirmgitterkaltspannung	υ _{g20}		max.	1000	٧
Schirmgitterspannung	n ⁸⁵		max.	600	٧
Schirmgitterspannungs-					
modulation	nod gg mod		max.	3 00	A
Gittervorspannung	- ^U g1		max.	200	V
Katodenstrom	I _k		max.	260	mA
Anodenverlustleistung	Pa.		max.	60	W
Schirmgitterverlustleistung	Pg2		max.	10	W
Gitterverlustleistung	Pg1		max.	0,5	W
Gitterableitwiderstand bei I _{g1} = 0 mA	R _{g1}		max.	50	kOhm
Spanning zwischen	R1			,,,	
Heizer und Katode	^U f k		max.	200	٧
	1 K		-		•

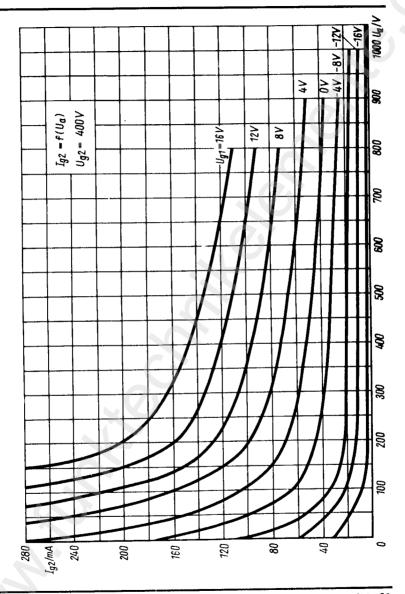


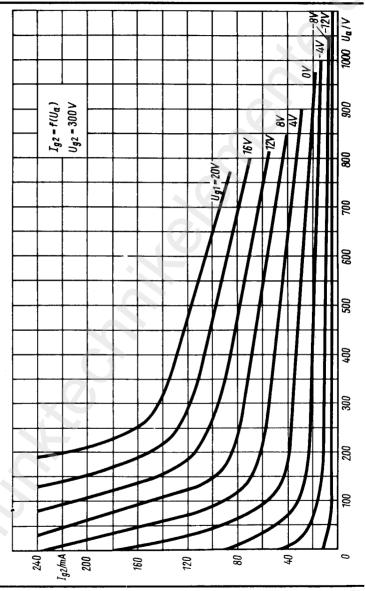
SRS 551

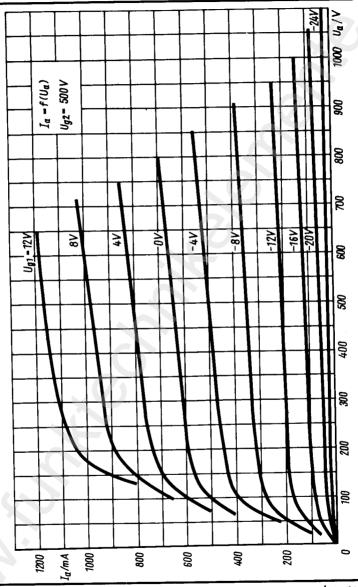
Temperatur am Kolben (in un- mittelbarer Nähe der Anode) Temperatur an den Stiften	$ heta_{ ext{kolb}}$	max.	280 180	°C
Kapazitäten				
Eingang Ausgang Gitter 1/Anode	Cin Cout Cg1 a	9.	27 15 0,24	pF pF pF

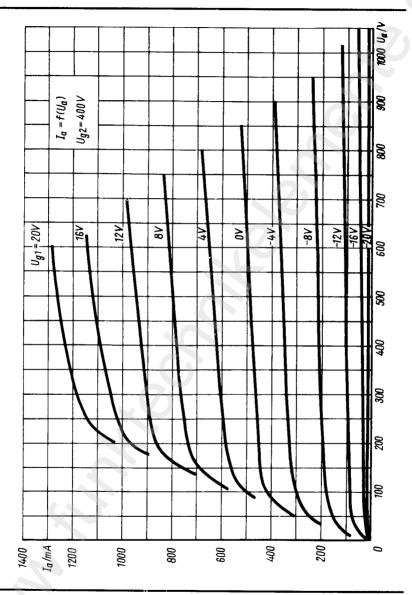


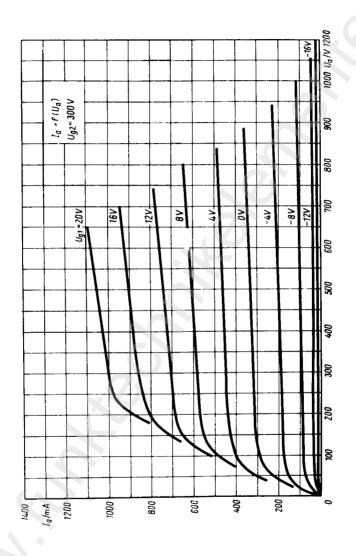



5/12.68 183









10/12.68 188

VEB WERK FUR FERNSEHELEKTRONIK

DDR - 116 Berlin, Ostendstraße 1 - 5

Fernruf: 632741

Fernschreiber: WF Berlin 11 2007, 11 2008

Exporteur:

Deutsche Export- und Importgesellschaft m. b. H. DDR – 104 Berlin, Luisenstraße 46 Telefon: 22062115 – Telex: 011-2259